431
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Carcinogenic effects of hyperthermia

, , , &
Pages 236-251 | Published online: 09 Jul 2009

  • IEGMP. Mobile Phones and health. In: Health IegompUMo, ed. Chilton, Didcot, Oxon OXI1 ORQ, UK: National Radiological Protection Board, 2000.
  • Repacholi MH. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics 1998; 191: 1-19.
  • Weston A, Harris CC. Chemical carcinogenesis. In: Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E, eds. Cancer Medicine, 5th edn. Hamilton: B.C. Decker, Inc., 2000; 189-194.
  • Murphy SK, Jirtle RL. Imprinted genes as potential genetic and epigenetic toxicologie targets. Environ Health Perspect 2000; 108 (Suppl 1): 5-11.
  • Int J Hyperthermia 2002; 18, 485-608. London: Taylor & Francis, 2002.
  • Dewey WC, Westra A, Miller HH, Nagasawa H. Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol Relat Stud Phys Chem Med 1971; 20: 505-20.
  • Dewey WC, Li XL, Wong RS. Cell killing, chromosomal aberrations, and division delay as thermal sensitivity is modified during the cell cycle. Radiat Res 1990; 122: 268-74.
  • Eki T, Enomoto T, Murakami Y, Hanaoka F, Yamada M. Characterization of chromosome aberrations induced by incubation at a restrictive temperature in the mouse temperature-sensitive mutant tsFT20 strain containing heat-labile DNA polymerase alpha. Cancer Res 1987; 47: 5162-70.
  • Livingston GK, Dethlefsen LA. Effects of hyperthermia and X irradiation on sister chromatid exchange (SCE) frequency in Chinese hamster ovary (CHO) cells. Radiat Res 1979; 77: 512-20.
  • Westra A, Dewey WC. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 1971; 19: 467-77.
  • Mackey MA, Dewey WC. Time-temperature analyses of cell killing of synchronous Gl and S phase Chinese hamster cells in vitro. Radiat Res 1988; 113: 318-33.
  • Li XL, Wong RS, Dewey WC. Thermal tolerance during S phase for cell killing and chromosomal aberrations. Radiat Res 1990; 122: 193-6.
  • Wong RS, Dewey WC. Molecular studies on the hyperthermic inhibition of DNA synthesis in Chinese hamster ovary cells. Radiat Res 1982; 92: 370-95.
  • Wong RS, Kapp LN, Dewey WC. DNA fork displacement rate measurements in heated Chinese hamster ovary cells. Biochim Biophys Acta 1989; 1007: 224-7.
  • Wong RS, Thompson LL, Dewey WC. Recovery from effects of heat on DNA synthesis in Chinese hamster ovary cells. Radiat Res 1988; 114: 125-37.
  • Kaufmann WK. Pathways of human cell post-replication repair. Carcinogenesis 1989; 10: 1-11.
  • Corry PM, Robinson S, Getz S. Hyperthermic effects on DNA repair mechanisms. Radiology 1977; 123: 475-82.
  • Wachsberger PR, Iliakis G. Hyperthermia does not affect rejoining of DNA double-strand breaks in a cell-free assay. Int J Radiat Biol 2000; 76: 313-26.
  • Diakis G, Seaner R, Okayasu R. Effects of hyperthermia on the repair of radiationinduced DNA single- and double-strand breaks in DNA double-strand break repair-deficient and repair-proficient cell lines. Int J Hyperthermia 1990; 6: 813-33.
  • Nevaldine B, Longo JA, Hahn PJ. Hyperthermia inhibits the repair of DNA doublestrand breaks induced by ionizing radiation as determined by pulsed-field gel electrophoresis. Int J Hyperthermia 1994; 10: 381-8.
  • Wong RS, Dynlacht JR, Cedervall B, Dewey WC. Analysis by pulsed-field gel electrophoresis of DNA double-strand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells. Int J Radiat Biol 1995; 68: 141-52.
  • Jorritsma JB, Konings AW. DNA lesions in hyperthermic cell killing: effects of thermotolerance, procaine, and erythritol. Radiat Res 1986; 106: 89-97.
  • Warters RL, Brizgys LM, Axtell-Bartlett J. DNA damage production in CHO cells at elevated temperatures. J Cell Physiol 1985; 124: 481-6.
  • Mayer PJ, Bradley MO, Nichols WW. The effect of mild hypothermia (34°C) and mild hyperthermia (39°C) on DNA damage, repair and aging of human diploid fibroblasts. Mech Ageing Dev 1987; 39: 203-22.
  • Jorritsma JB, Konings AW. Inhibition of repair of radiation-induced strand breaks by hyperthermia, and its relationship to cell survival after hyperthermia alone. Int J Radiat Biol Relat Stud Phys Chem Med 1983; 43: 505-16.
  • Kampinga HH, Dikomey E. Review: hyperthermic radiosensitization: mode of action and clinical relevance. Int J Radiat Biol 2001; 77: 399-408.
  • El-Awady RA, Dikomey E, Dahm-Daphi J. Heat effects on DNA repair after ionising radiation: hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangements. Nucleic Acids Res 2001; 29: 1960-6.
  • Spiro I, Denman D, Dewey WC. Effect of hyperthermia on CHO DNA polymerases alpha and beta. Radiat Res 1982; 89: 134-49.
  • Spiro I, Denman D, Dewey WC. Effect of hyperthermia on isolated DNA polymerasebeta. Radiat Res 1983; 95: 68-77.
  • Jorritsma JB, Kampinga HH, Scaf AH, Konings AW. Strand break repair, DNA polymerase activity and heat radiosensitization in thermotolerant cells. Int J Hyperthermia 1985; 1: 131-45.
  • Kampinga HH, Konings AW. Inhibition of repair of X-ray-induced DNA damage by heat: the role of hyperthermic inhibition of DNA polymerase alpha activity. Radiat Res 1987; 112:86-98.
  • Dikomey E, Jung H. Correlation between polymerase beta activity and thermal radiosensitization in Chinese hamster ovary cells. Recent Results Cancer Res 1988; 109: 35-41.
  • Raaphorst GP, Feeley MM. Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair. Int J Radiat Oncol Biol Phys 1994; 29: 133-9.
  • Iliakis GE, Pantelias GE. Effects of hyperthermia on chromatin condensation and nucleoli disintegration as visualized by induction of premature chromosome condensation in interphase mammalian cells. Cancer Res 1989; 49: 1254-60.
  • Kampinga HH, Wright WD, Konings AW, Roti Roti JL. Changes in the structure of nucleoids isolated from heat-shocked HeLa cells. Int J Radiat Biol 1989; 56: 369-82.
  • Sakkers RJ, Filon AR, Brunsting JF, Kampinga HH, Mullenders LH, Konings AW. Heat-shock treatment selectively affects induction and repair of cyclobutane pyrimidine dimers in transcriptionally active genes in ultraviolet-irradiated human fibroblasts. Radiat Res 1993; 135: 343-50.
  • Kampinga HH, van den Kruk G, Konings AW. Reduced DNA break formation and cytotoxicity of the topoisomerase II drug 4'-(9'-acridinylamino)methanesulfon-m-anisidide when combined with hyperthermia in human and rodent cell lines. Cancer Res 1989; 49: 1712-17.
  • Mitchel RE, Smith BP, Wheatly N, Chan A, Child S, Paterson MC. Sensitivity of hyperthermia-treated human cells to killing by ultraviolet or gamma radiation. Radiat Res 1985; 104: 234-41.
  • Sakkers RJ, Filon AR, Brunsting JF, Kampinga HH, Konings AW, Mullenders LH. Selective inhibition of repair of active genes by hyperthermia is due to inhibition of global and transcription coupled repair pathways. Carcinogenesis 1995; 16: 743-8.
  • Grecz N, Bruszer G. Lethal heat induces single strand breaks in the DNA of bacterial spores. Biochem Biophys Res Commun 1981; 98: 191-6.
  • Grogan DW. Hyperthermophiles and the problem of DNA instability. MoI Microbiol 1998; 28: 1043-9.
  • Lindquist S. Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 1992; 2: 748-55.
  • Waters ER, Schaal BA. Heat shock induces a loss of rRNA-encoding DNA repeats in Brassica nigra. Proc Natl Acad Sci USA 1996; 93: 1449-52.
  • Mittler S. Hyperthermia and radiation induced genetic aberrations in Drosophila melanogaster. Mutat Res 1979; 59: 123-8.
  • Schenberg-Frascino A, Moustacchi E. Lethal and mutagenic effects of elevated temperature on haploid yeast. I. Variations in sensitivity during the cell cycle. MoI Gen Genet 1972; 115:243-57.
  • Davidson JF, Schiestl RH. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. J Bacterial 2001; 183: 4580-7.
  • Mitchel RE, Morrison DP. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae. Transient changes in growth cycle distribution and recombinational ability. Radiat Res 1982; 92: 182-7.
  • Mitchel RE, Morrison DP. Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae. Radiat Res 1983; 96: 95-9.
  • Mitchel RE, Morrison DP. Inducible DNA-repair systems in yeast: competition for lesions. Mutat Res 1987; 183: 149-59.
  • Mitchel RE, Morrison DP. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary growth phase. Radiat Res 1982; 90: 284-91.
  • Leonhardt EA, Trinh M, Forrester HB, Johnson RT, Dewey WC. Comparisons of the frequencies and molecular spectra of HPRT mutants when human cancer cells were Xirradiated during Gl or S phase. Radiat Res 1997; 148: 548-60.
  • Banerjee S, Bhaumik G, Bhattacharjee SB. Influence of hyperthermia on gamma-rayinduced mutation in V79 cells. Radiat Res 1989; 119: 305-12.
  • Hall EJ. Oncogenic transformation systems involving mammalian cells in vitro to determine the relative risks of different treatment modalities. Strahlentherapie 1984; 160: 72531.
  • Clark EP, Hahn GM, Little JB. Hyperthermic modulation of X-ray-induced oncogenic transformation in C3H 10T1/2 cells. Radiat Res 1981; 88: 619-22.
  • Li CY, Little JB, Hu K, Zhang W, Zhang L, Dewhirst MW, Huang Q. Persistent genetic instability in cancer cells induced by non-DNA- damaging stress exposures. Cancer Res 2001; 61: 428-32.
  • Hall E. Principles of carcinogenesis: physical. In: DeVita V, Hellman S, Rosenberg S, eds, Cancer: Principles and Practice of Oncology, 4th edn Philadelphia: J.B. Lippincott Co., 1993; 213-27.
  • Urano M. Long-term observation of mouse foot reaction after hyperthermia: hyperthermia may or may not be carcinogenic? Br J Radial 1981; 54: 534-6.
  • Coburn R. Malignant ulcers following trauma. In: Andrad R, Mumport S, Popkin G, Rees T, eds, Cancer of the skin: Biology, Diagnosis. Management. Philadelphia: WB Saunders, 1976; 939-49.
  • Mitchel RE, Morrison DP, Gragtmans NJ. The influence of a hyperthermia treatment on chemically induced tumor initiation and progression in mouse skin. Carcinogenesis 1988; 9: 379-85.
  • Mitchel RE, Morrison DP, Gragtmans NJ, Jevcak JJ. Hyperthermia and phorbol ester tumor promotion in mouse skin. Carcinogenesis 1986; 7: 1505-10.
  • Sminia P, Jansen W, Haveman J, Van Dijk JD. Incidence of tumours in the cervical region of the rat after treatment with radiation and hyperthermia. Int J Radiat Biol 1990; 57: 425-36.
  • Sminia P, Haveman J, Jansen W, Hendriks JJ, van Dijk JD. Hyperthermia promotes the incidence of tumours following X-irradiation of the rat cervical cord region. Int J Radiat Biol 1991; 60: 83-95.
  • Van Leeuwen GM, Lagendijk JJ, Van Leersum BJ, Zwamborn AP, Hornsleth SN, Kotte AN. Calculation of change in brain temperatures due to exposure to a mobile phone. Phys Med Biol 1999; 44: 2367-79.
  • Wainwright PR. Thermal effects of radiation from cellular telephones. Phys Med Biol 2002; 45: 2363-72.
  • Pakhomova ON, Pakhomov AG, Akyel Y. Effect of millimeter waves on UV-induced recombination and mutagenesis in yeast. Bioelectrochem Bioenerg 1997; 43: 227.
  • Szmigielski S, Szudzinski A, Pietraszek A, Bielec M, Janiak M, Wrembel JK. Accelerated development of spontaneous and benzopyrene-induced skin cancer in mice exposed to 2450-MHz microwave radiation. Bioelectromagnetics 1982; 3: 179-91.
  • Szmigielski S, Bielec M, Lipski S, Sokoloska G. Immunologie and cancer-related aspects of exposure to low-level microwave and radiofrequency fields. In: Marino AA, ed, Modern Bioelectricity. New York: Marcel Dekker, 1988; 861-925.
  • Szmigielski S. Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiation. Sci Total Environ 1996; 180: 9-17.
  • Szudzinski A, Pietraszek A, Janiak M, Wrembel J, Kalczak M, Szmigielski S. Acceleration of the development of benzopyrene-induced skin cancer in mice by microwave radiation. Arch Dermatol Res 1982; 274: 303-12.
  • Repacholi MH. Health risks from the use of mobile phones. Toxicol Lett 2001; 120: 32331.
  • van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, Berns, A. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989; 56: 673-82.
  • Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, Harris AW. Lymphomas in E mu-Piml transgenic mice exposed to pulsed 900 MHZ electromagnetic fields. Radiat Res 1997; 147: 631-40.
  • Utteridge T, Gebski V, Finnie J, Vernon-Roberts B, Kuchel T. Long-term exposure of EµPiml transgenic mice to 898.4MHz microwaves does not increase lymphoma incidence. Radiat Res 2002; 158: 357-64.
  • Mitchel RE, Morrison DP, Gragtmans NJ. Tumorigenesis and carcinogenesis in mouse skin treated with hyperthermia during stage I or stage II of tumor promotion. Carcinogenesis 1987; 8: 1875-9.
  • Moulder JE, Erdreich LS, Malyapa RS, Merritt J, Pickard WF, Vijayalaxmi. Cell phones and cancer: what is the evidence for a connection? Radiat Res 1999; 151: 513-31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.