784
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells

, , , , , , & show all
Pages 778-785 | Received 10 Mar 2016, Accepted 19 Jul 2016, Published online: 09 Aug 2016

References

  • Wu W, Wu Z, Yu T, et al. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16. doi:10.1088/1468-6996/16/2/023501.
  • Sakamoto JH, Van De Ven AL, Godin B, et al. (2010). Enabling individualized therapy through nanotechnology. Pharmacol Res 62:57–89.
  • Tseng P, Judy JW, Di Carlo D. (2012). Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat Methods 9:1113–19.
  • Plouffe BD, Murthy SK, Lewis LH. (2014). Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Prog Phys 78:016601. doi:10.1088/0034-4885/78/1/016601.
  • Bonnemay L, Hoffmann C, Gueroui Z. (2014). Remote control of signaling pathways using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:342–54.
  • Dobson J. (2006). Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–7.
  • Corot C, Robert P, Idée JM, Port M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–504.
  • Yang F, Li Y, Chen Z, et al. (2009). Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 30:3882–90.
  • Yang L, Cao Z, Sajja HK, et al. (2008). Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol 4:439–49.
  • Estelrich J, Escribano E, Queralt J, Busquets MA. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–101.
  • Liu Y, Gao Y, Xu C. (2013). Using magnetic nanoparticles to manipulate biological objects. Chin Phys B 22:097503.
  • Périgo EA, Hemery G, Sandre O, et al. (2015). Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2:041302.
  • Dutz S, Hergt R. (2014). Magnetic particle hyperthermia-a promising tumour therapy? Nanotechnology 25:452001.
  • Gilchrist RK, Medal R, Shorey WD, et al. (1957). Selective inductive heating of lymph nodes. Ann Surg 146:596–606.
  • Jordan A, Scholz R, Maier-Hauff K, et al. (2001). Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225:118–26.
  • Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C. (2013). Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperthermia 29:706–14.
  • Hilger I. (2013). In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia 29:828–34.
  • Grüttner C, Müller K, Teller J, Westphal F. (2013). Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperthermia 29:777–89.
  • Ito A, Shinkai M, Honda H, Kobayashi T. (2005). Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100: 1–11.
  • Balivada S, Rachakatla RS, Wang H, et al. (2010). A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10:119–27.
  • Gneveckow U, Jordan A, Scholz R, et al. (2004). Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 31:1444–51.
  • Johannsen M, Thiesen B, Wust P, Jordan A. (2010). Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 26:790–5.
  • Kansara M, Teng MW, Smyth MJ, Thomas DM. (2014). Translational biology of osteosarcoma. Nat Rev Cancer 14:722–35.
  • Hogendoorn PC, Athanasou N, Bielack S, et al. ESMO/EUROBONET Working Group. (2010). Bone sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 21:204–13.
  • Rodan SB, Imai Y, Thiede MA, et al. (1987). Characterization of a human osteosarcoma cell line (SaOS-2) with osteoblastic properties. Cancer Res 47:4961–6.
  • Zebisch K, Voigt V, Wabitsch M, Brandsch M. (2012). Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal Biochem 425:88–90.
  • Blau HM, Pavlath GK, Hardeman EC, et al. (1985). Plasticity of the differentiated state. Science 230:758–66.
  • Simeonidis K, Liébana Viñas S, Wiedwald U. (2016). A versatile large-scale and green process for synthesizing magnetic nanoparticles with tunable magnetic hyperthermia features. RSC Adv 6: 53107–17.
  • Lee JH, Jang JT, Choi JS, et al. (2011). Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–22.
  • Angelakeris M, Li ZA, Hilgendorff M, et al. (2015). Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles. J Magn Magn Mater 381:179–87.
  • Liébana Viñas S, Simeonidis K, Li Z-A, et al. (2016). Tuning the magnetism of ferrite nanoparticles. J Magn Magn Mater 415:20–3.
  • Sharifi I, Shokrollahi H, Amiri S. (2012). Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–15.
  • Bellizzi G, Bucci OM, Chirico G. (2016). Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. Int J Hyperthermia 7. doi:10.3109/02656736.2016.1167258.
  • Sapareto SA. (1987). Thermal isoeffect dose: addressing the problem of thermotolerance. Int J Hyperthermia 3:297–305.
  • Oleson JR, Samulski TV, Leopold KA, et al. (1993). Sensitivity of hyperthermia trial outcomes to temperature and time: Implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25: 289–97.
  • Yarmolenko PS, Moon EJ, Landon C, et al. (2011). Thresholds for thermal damage to normal tissues: an update. Int J Hyperthermia 26:1–26.
  • Van Rhoon GC, Samaras T, Yarmolenko PS, et al. (2013). CEM43 °C thermal dose thresholds: A potential guide for magnetic resonance radiofrequency exposure levels? Eur Radiol 23:2215–27.
  • Dewhirst MW, Abrahamx J, Viglianti B. (2015). Evolution of thermal dosimetry for application of hyperthermia to treat cancer. Chapter 6. Adv Heat Transfer 47:397–421.
  • Lei L, Ling-Ling J, Yun Z, Gang L. (2013). Toxicity of superparamagnetic iron oxide nanoparticles: research strategies and implications for nanomedicine. Chin Phys B 22:1–10.
  • Chung DM, Kim JH, Kim JK. (2015). Evaluation of MTT and trypan blue assays for radiation-induced cell viability test in HepG2 cells. Int J Radiat Res 13:331–5.
  • Makridis A, Topouridou K, Tziomaki M, et al. (2014). In vitro application of Mn-ferrite nanoparticles as novel magnetic hyperthermia agents. J Mater Chem B Mater Biol Med 2:8390–8.
  • Bogart LK, Taylor A, Cesbron Y, et al. (2012). Photothermal microscopy of the core of dextran-coated iron oxide nanoparticles during cell uptake. ACS Nano 6:5961–71.
  • Herman TS, Gerner EW, Magun BE, et al. (1981). Rate of heating as a determinant of hyperthermic cytotoxicity. Cancer Res 41:3519–23.
  • Gerner EW. (1987). Thermal dose and time-temperature factors for biological responses to heat shock. Int J Hyperthermia 3: 319–27.
  • Mallory M, Gogineni E, Jones GC, et al. (2016). Therapeutic hyperthermia: The old, the new, and the upcoming. Crit Rev Oncol Hematol 97:56–64.
  • Tang Y, McGoron AJ. (2013). Increasing the rate of heating: a potential therapeutic approach for achieving synergistic tumour killing in combined hyperthermia and chemotherapy. Int J Hyperthermia 29:145–55.
  • Alvarez-Berríos MP, Castillo A, Mendéz J, et al. (2013). Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity. Int J Nanomed 8:1003.
  • Urban AS, Fedoruk M, Horton MR, et al. (2009). Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. Nano Lett 9:2903–8.
  • Sundararajan R, Jason H, Funian X, et al. (2014). Electroporation-based therapies for cancer. Cambridge, UK: Elsevier.
  • Blanco-Andujar C, Ortega D, Southern P, et al. (2016). Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine (Lond) 11:121–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.