1,603
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon cancer cell line HT-29

, , &
Pages 327-335 | Received 23 Aug 2015, Accepted 27 Sep 2016, Published online: 23 Oct 2016

References

  • Esmaelbeygi E, Khoei S, Khoee S, Eynali S. (2015). Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29. Int J Hyperther 31:489–97.
  • Labianca R, Beretta GD, Kildani B, et al. (2010). Colon cancer. Crit Rev Oncol Hematol 74:106–33.
  • Siegel R, Desantis C, Jemal A. (2014). Colorectal cancer statistics, 2014. Cancer J Clinicians 64:104–17.
  • Habash RW, Bansal R, Krewski D, Alhafid HT. (2006). Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng 34:491–542.
  • Hildebrandt B, Wust P, Ahlers O, et al. (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56.
  • Jhaveri A. (2009). Magnetic nanomedicine and hyperthermia for the treatment of thyroid cancer. MSc Thesis. Northeastern University Boston, Massachusetts. p. 20.
  • Cherukuri P, Glazer ES, Curley SA. (2010). Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–45.
  • Al-Ahmady ZS, Al-Jamal WT, Bossche JV, et al. (2012). Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano 6:9335–46.
  • Streffer C, Vaupel P, Hahn G. (1990). Biological basis of oncologic thermotherapy. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer Verlag.
  • Pettersen HS, Visnes T, Vågbø CB, et al. (2011). UNG-initiated base excision repair is the major repair route for 5-fluorouracil in DNA, but 5-fluorouracil cytotoxicity depends mainly on RNA incorporation. Nucleic Acids Res 39:8430–44.
  • Longley DB, Harkin DP, Johnston PG. (2003). 5-Fluorouracil: mechanisms of action and clinical strategies. Nature Rev Cancer 3:330–8.
  • Takeda H, Haisa M, Naomoto Y, et al. (1999). Effect of 5-fluorouracil on cell cycle regulatory proteins in human colon cancer cell line. Jpn J Cancer Res 90:677–84.
  • Johnston P, Kaye S. (2001). Capecitabine: a novel agent for the treatment of solid tumors. Anti-Cancer Drugs 12:639–46.
  • Nair L, Jagadeeshan S, Nair SA, Kumar GV. (2011). Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed 6:1685.
  • Shakeri-Zadeh A, Shiran MB, Khoee S, et al. (2014). A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumour, and pro-apoptotic effects on CT26 cells allograft model. J Biomater Appl 29:548–56.
  • Zhu L, Ma J, Jia N, et al. (2009). Chitosan-coated magnetic nanoparticles as carriers of 5-fluorouracil: preparation, characterisation and cytotoxicity studies. Colloids Surfaces B 68:1–6.
  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. (2011). Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–76.
  • Danhier F, Ansorena E, Silva JM, et al. (2012). PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–22.
  • Petryk A, Giustini A, Ryan P, et al. (2009). Iron oxide nanoparticle hyperthermia and chemotherapy cancer treatment. Proc Soc Photo-Optical Instrument Eng 7181:71810N.
  • Torres-Lugo M, Rinaldi C. (2013). Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine (Lond) 8:1689–707.
  • Friedrich J, Eder W, Castaneda J, et al. (2007). A reliable tool to determine cell viability in complex 3-d culture: the acid phosphatase assay. J Biomol Screen 12:925–37.
  • Yuhas JM, Li AP, Martinez AO, Ladman AJ. (1977). A simplified method for production and growth of multicellular tumor spheroids. Cancer Res 37:3639–43.
  • Ashjari M, Khoee S, Mahdavian AR. (2012). A multiple emulsion method for loading 5‐fluorouracil into a magnetite‐loaded nanocapsule: a physicochemical investigation. Polym Int 61:850–9.
  • Khoee S, Yaghoobian M. (2009). An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. Eur J Med Chem 44:2392–9.
  • Khoee S, Hassanzadeh S, Goliaie B. (2007). Effects of hydrophobic drug–polyesteric core interactions on drug loading and release properties of poly (ethylene glycol)–polyester–poly (ethylene glycol) triblock core–shell nanoparticles. Nanotechnology 18:175602.
  • Hans M, Lowman A. (2002). Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–27.
  • Hajikarimi Z, Khoei S, Khoee S, Mahdavi SR. (2014). Evaluation of the cytotoxic effects of PLGA coated iron oxide nanoparticles as a carrier of 5-fluorouracil and mega-voltage X-ray radiation in DU145 prostate cancer cell line. IEEE Trans Nanobiosci 13:403–8.
  • Dobrucki J, Bleehen N. (1985). Cell-cell contact affects cellular sensitivity to hyperthermia. Brit J Cancer 52:849.
  • Maehara Y, Sakaguchi Y, Takahashi I, et al. (1992). 5-Fluorouracil's cytotoxicity is enhanced both in vitro and in vivo by concomitant treatment with hyperthermia and dipyridamole. Cancer Chemother Pharmacol 29:257–60.
  • Kido Y, Kuwano H, Maehara Y, et al. (1991). Increased cytotoxicity of low-dose, long-duration exposure to 5-fluorouracil of V-79 cells with hyperthermia. Cancer Chemother Pharmacol 28:251–4.
  • Davis ME. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev Drug Discov 7:771–82.
  • Abulateefeh SR, Spain SG, Thurecht KG, et al. (2013). Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line. Biomater Sci 1:434–42.
  • Mohammadi S, Khoei S, Mahdavi SR. (2012). The combination effect of poly(lactic-co-glycolic acid) coated iron oxide nanoparticles as 5-fluorouracil carrier and X-ray on the level of DNA damages in the DU 145 human prostate carcinoma cell line. J Bionanosci 6:23–7.
  • Sutar P, Joshi V. (2013). Preparation and characterisation of 5-fluorouracil loaded PLGA nanoparticles for colorectal cancer therapy. Unique J Pharmaceut Biol Sci 1:52–8.
  • Li L, Mak K, Shi J, et al. (2012). Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake. J Nanosci Nanotechnol 12:9010–17.
  • Tansık G, Yakar A, Gündüz U. (2014). Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. J Nanoparticle Res 16:1–13.
  • Muthu M. (2009). Nanoparticles based on PLGA and its co-polymer: an overview. Asian J Pharmaceut 3:266–73.
  • Schleich N, Sibret P, Danhier P, et al. (2013). Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharmaceut 447:94–101.
  • Naik S, Carpenter EE. (2008). Poly (D,L-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as a drug carrier. J Appl Phys 103:07A313.
  • Shakeri-Zadeh A, Khoei S, Khoee S, et al. (2015). Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. J Med Ultrason 42:9–16.
  • Jordan A, Scholz R, Wust P, et al. (1999). Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magnet Magnetic Mater 194:185–96.
  • Yang WJ, Lee JH, Hong SC, et al. (2013). Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials 6:4689–706.
  • Attaluri A, Kandala SK, Wabler M, et al. (2015). Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer. Int J Hyperther 31:359–74.
  • Shakeri-Zadeh A, Khoee S, Shiran MB, et al. (2015). Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumour irradiation by ultrasound on CT26 tumours in BALB/c mice. J Mater Chem B 3:1879–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.