2,017
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1-i

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 39-48 | Received 02 Dec 2016, Accepted 25 Apr 2017, Published online: 19 May 2017

References

  • Branzei D, Foiani M. (2010). Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–19.
  • Satoh MS, Lindahl T. (1992). Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–8.
  • Shrivastav M, De Haro LP, Nickoloff JA. (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–47.
  • Essers J, van Steeg H, de Wit J, et al. (2000). Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J 19:1703–10.
  • Rothstein R, Michel B, Gangloff S. (2000). Replication fork pausing and recombination or "gimme a break". Genes Dev 14:1–10.
  • Bryant HE, Schultz N, Thomas HD, et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–17.
  • Farmer H, McCabe N, Lord CJ, et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–21.
  • Eppink B, Krawczyk PM, Stap J, Kanaar R. (2012). Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperthermia 28:509–17.
  • Oei AL, Vriend LE, Crezee J, et al. (2015). Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 10:165.
  • Falk MH, Issels RD. (2001). Hyperthermia in oncology. Int J Hyperthermia 17:1–18.
  • Oleson JR, Dewhirst MW. (1983). Hyperthermia: an overview of current progress and problems. Curr Problems Cancer 8:1–62.
  • Horsman MR, Overgaard J. (2007). Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol) 19:418–26.
  • Oei AL, van Leeuwen CM, ten Cate R, et al. (2015). Hyperthermia selectively targets human papillomavirus in cervical tumors via p53-dependent apoptosis. Cancer Res 75:5120–9.
  • Repasky EA, Evans SS, Dewhirst MW. (2013). Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res 1:210–16.
  • Dewhirst MW, Lee CT, Ashcraft KA. (2016). The future of biology in driving the field of hyperthermia. Int J Hyperthermia 32:4–13.
  • Horsman MR. (2016). Realistic biological approaches for improving thermoradiotherapy. Int J Hyperthermia 32:14–22.
  • Crezee H, van Leeuwen CM, Oei AL, et al. (2016). Thermoradiotherapy planning: Integration in routine clinical practice. Int J Hyperthermia 32:41–9.
  • Krawczyk PM, Eppink B, Essers J, et al. (2011). Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 108:9851–6.
  • El-Awady RA, Dikomey E, Dahm-Daphi J. (2001). Heat effects on DNA repair after ionising radiation: hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangements. Nucleic Acids Res 29:1960–6.
  • van der Zee J, Gonzalez Gonzalez D, van Rhoon GC, et al. (2000). Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Dutch Deep Hyperthermia Group. Lancet 355:1119–25.
  • Datta NR, Rogers S, Klingbiel D, et al. (2016). Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: a systematic review with conventional and network meta-analyses. Int J Hyperthermia 32:809–21.
  • Snider JW III, Datta NR, Vujaskovic Z. (2016). Hyperthermia and radiotherapy in bladder cancer. Int J Hyperthermia 32:398–406.
  • Datta NR, Puric E, Klingbiel D, et al. (2016). Hyperthermia and radiation therapy in locoregional recurrent breast cancers: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys 94:1073–87.
  • Issels RD. (2008). Hyperthermia adds to chemotherapy. Eur J Cancer 44:2546–54.
  • Raaphorst GP, Freeman ML, Dewey WC. (1979). Radiosensitivity and recovery from radiation damage in cultured CHO cells exposed to hyperthermia at 42.5 or 45.5 degrees C. Radiat Res 79:390–402.
  • Freeman ML, Raaphorst GP, Dewey WC. (1979). The relationship of heat killing and thermal radiosensitization to the duration of heating at 42 degrees C. Radiat Res 78:172–5.
  • Dewey WC. (1996). Tumour reoxygenation and response after hyperthermia and radiation: T(90) as a predictor and T(50) as the cause?. Int J Hyperthermia 12:443–4.
  • Iliakis G, Wu W, Wang M. (2008). DNA double strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ. Int J Hyperthermia 24:17–29.
  • Corry PM, Robinson S, Getz S. (1977). Hyperthermic effects on DNA repair mechanisms. Radiology 123:475–82.
  • Kampinga HH, Laszlo A. (2005). DNA double strand breaks do not play a role in heat-induced cell killing. Cancer Res 65:10632–3.
  • Velichko AK, Petrova NV, Kantidze OL, Razin SV. (2012). Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 23:3450–60.
  • Evers B, Drost R, Schut E, et al. (2008). Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin Cancer Res 14:3916–25.
  • Evers B, Schut E, van der Burg E, et al. (2010). A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin Cancer Res 16:99–108.
  • Wade-Martins R, Smith ER, Tyminski E, et al. (2001). An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol. 19:1067–70.
  • Bergs JW, Krawczyk PM, Borovski T, et al. (2013). Inhibition of homologous recombination by hyperthermia shunts early double strand break repair to non-homologous end-joining. DNA Repair 12:38–45.
  • Franken NA, Rodermond HM, Stap J, et al. (2006). Clonogenic assay of cells in vitro. Nat Protoc 1:2315–19.
  • Bergs JW, Franken NA, ten Cate R, et al. (2006). Effects of cisplatin and gamma-irradiation on cell survival, the induction of chromosomal aberrations and apoptosis in SW-1573 cells. Mutat Res 594:148–54.
  • van Bree C, Franken NA, Snel FA, et al. (2001). Wild-type p53-function is not required for hyperthermia-enhanced cytotoxicity of cisplatin. Int J Hyperthermia 17:337–46.
  • Barendsen GW. (1997). Parameters of linear-quadratic radiation dose-effect relationships: dependence on LET and mechanisms of reproductive cell death. Int J Radiat Biol 71:649–55.
  • Olive PL, Banath JP. (2006). The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–9.
  • Riccardi C, Nicoletti I. (2006). Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–61.
  • van Bree C, Franken NA, Rodermond HM, et al. (2004). Repair of potentially lethal damage does not depend on functional TP53 in human glioblastoma cells. Radiat Res 161:511–16.
  • Takahashi A, Mori E, Nakagawa Y, et al. (2017). Homologous recombination preferentially repairs heat-induced breaks in mammalian cells. Int J Hyperthermia 33:336–42.
  • Hunt CR, Pandita RK, Laszlo A, et al. (2007). Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 67:3010–17.
  • Genet SC, Fujii Y, Maeda J, et al. (2013). Hyperthermia inhibits homologous recombination repair and sensitizes cells to ionizing radiation in a time- and temperature-dependent manner. JCell Physiol 228:1473–81.
  • van Oorschot B, Granata GD, Franco S, Ten Cate R, Rodermond HM, Todaro M, et al. (2016). Targeting DNA double strand break repair with hyperthermia and DNA-PKCS inhibition to enhance the effect of radiation treatment. Oncotarget 7:65504–13.
  • Ihara M, Takeshita S, Okaichi K, et al. (2014). Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair. Int J Hyperthermia: 30:102–9.
  • Kampinga HH, Dynlacht JR, Dikomey E. (2004). Mechanism of radiosensitization by hyperthermia (> or =43 degrees C) as derived from studies with DNA repair defective mutant cell lines. Int J Hyperthermia 20:131–9.
  • Woudstra EC, Konings AW, Jeggo PA, Kampinga HH. (1999). Role of DNA-PK subunits in radiosensitization by hyperthermia. Radiat Res 152:214–18.
  • Schiewer MJ, Goodwin JF, Han S, et al. (2012). Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2:1134–49.
  • Zaremba T, Thomas HD, Cole M, et al. (2011). Poly(ADP-ribose) polymerase-1 (PARP-1) pharmacogenetics, activity and expression analysis in cancer patients and healthy volunteers. Biochem J 436:671–9.
  • Tinker AV, Gelmon K. (2012). The role of PARP inhibitors in the treatment of ovarian carcinomas. Curr Pharm Des 18:3770–4.
  • Bangham M, Goldstein R, Walton H, Ledermann JA. (2016). Olaparib treatment for BRCA-mutant ovarian cancer with leptomeningeal disease. Gynecol Oncol Rep 18:22–4.