1,480
Views
19
CrossRef citations to date
0
Altmetric
Research Article

LncRNA FUNDC2P4 down-regulation promotes epithelial–mesenchymal transition by reducing E-cadherin expression in residual hepatocellular carcinoma after insufficient radiofrequency ablation

, , , , , , , , , & show all
Pages 802-811 | Received 20 Oct 2017, Accepted 22 Dec 2017, Published online: 07 Feb 2018

References

  • Siegel RL, Miller KD, Jemal A. (2016). Cancer statistics, 2016. CA Cancer J Clin 66:7–30.
  • Chen W, Zheng R, Baade PD, et al. (2016). Cancer statistics in China, 2015. CA Cancer J Clin 66:115–32.
  • Zhang N, Wang L, Chai ZT, et al. (2014). Incomplete radiofrequency ablation enhances invasiveness and metastasis of residual cancer of hepatocellular carcinoma cell HCCLM3 via activating beta-catenin signaling. PLoS One 9:e115949.
  • Teng W, Liu KW, Lin CC, et al. (2015). Insufficient ablative margin determined by early computed tomography may predict the recurrence of hepatocellular carcinoma after radiofrequency ablation. Liver Cancer 4:26–38.
  • Poch FG, Rieder C, Ballhausen H, et al. (2016). The vascular cooling effect in hepatic multipolar radiofrequency ablation leads to incomplete ablation ex vivo. Int J Hypertherm 32:749–56.
  • Zheng XW, Zhao YF, Tang Z, et al. (2016). [Efficiency and influencing factors of ultrasound-guided radiofrequency ablation as treatment in hepatic malignant tumors]. Zhonghua gan zang Chin J Hepatol 24:69–73.
  • Donadon M, Solbiati L, Dawson L, et al. (2016). Hepatocellular carcinoma: the role of interventional oncology. Liver Cancer 6:34–43.
  • Ruzzenente A, Manzoni GD, Molfetta M, et al. (2004). Rapid progression of hepatocellular carcinoma after radiofrequency ablation. World J Gastroenterol 10:1137–40.
  • Ke S, Ding XM, Kong J, et al. (2010). Low temperature of radiofrequency ablation at the target sites can facilitate rapid progression of residual hepatic VX2 carcinoma. J Transl Med 8:73.
  • Kang TW, Lim HK, Cha DI. (2017). Aggressive tumor recurrence after radiofrequency ablation for hepatocellular carcinoma. Clin Mol Hepatol 23:95–101.
  • Chaffer CL, Weinberg RA. (2011). A perspective on cancer cell metastasis. Science 331:1559–64.
  • Yang J, Weinberg RA. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14:818–29.
  • Lamouille S, Xu J, Derynck R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–96.
  • Heery R, Finn SP, Cuffe S, et al. (2017). Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel) 9:38.
  • Serrano-Gomez SJ, Maziveyi M, Alahari SK. (2016). Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 15:18.
  • Dong S, Kong J, Kong F, et al. (2013). Insufficient radiofrequency ablation promotes epithelial-mesenchymal transition of hepatocellular carcinoma cells through Akt and ERK signaling pathways. J Transl Med 11:273.
  • Yoshida S, Kornek M, Ikenaga N, et al. (2013). Sublethal heat treatment promotes epithelial-mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma. Hepatology 58:1667–80.
  • Wang-Yuan Z, Jiang-Zheng Z, Lu YD, et al. (2016). Clinical efficacy of metronomic chemotherapy after cool-tip radiofrequency ablation in the treatment of hepatocellular carcinoma. Int J Hypertherm 32:193–8.
  • Schmitt AM, Chang HY. (2016). Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–63.
  • Yu FJ, Zheng JJ, Dong PH, et al. (2015). Long non-coding RNAs and hepatocellular carcinoma. Mol Clin Oncol 3:13–17.
  • Yuan JH, Yang F, Wang F, et al. (2014). A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25:666–81.
  • Li T, Xie J, Shen C, et al. (2016). Upregulation of long noncoding RNA ZEB1-AS1 promotes tumor metastasis and predicts poor prognosis in hepatocellular carcinoma. Oncogene 35:1575–84.
  • Wang TH, Lin YS, Chen Y, et al. (2015). Long non-coding RNA AOC4P suppresses hepatocellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition. Oncotarget 6:23342–57.
  • Li SP, Xu HX, Yu Y, et al. (2016). LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget 7:42431–46.
  • Obara K, Matsumoto N, Okamoto M, et al. (2008). Insufficient radiofrequency ablation therapy may induce further malignant transformation of hepatocellular carcinoma. Hepatol Int 2:116–23.
  • Shiina S, Tateishi R, Arano T, et al. (2012). Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol 107:569–77.
  • Wang P, Xue Y, Han Y, et al. (2014). The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–13.
  • Sun CC, Li SJ, Li G, et al. (2016). Long intergenic noncoding RNA 00511 acts as an oncogene in non-small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Ther Nucleic Acids 5:e385.
  • Li G, Warden C, Zou Z, et al. (2013). Altered expression of polycomb group genes in glioblastoma multiforme. PLoS One 8:e80970.
  • Forzati F, Federico A, Pallante P, et al. (2012). CBX7 is a tumor suppressor in mice and humans. J Clin Investig 122:612–23.
  • Karamitopoulou E, Pallante P, Zlobec I, et al. (2010). Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer (Oxford, England: 1990) 46:1438–44.
  • Hinz S, Kempkensteffen C, Christoph F, et al. (2008). Expression parameters of the polycomb group proteins BMI1, SUZ12, RING1 and CBX7 in urothelial carcinoma of the bladder and their prognostic relevance. Tumor Biol 29:323–9.
  • Pallante P, Federico A, Berlingieri MT, et al. (2008). Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res 68:6770–8.
  • Mansueto G, Forzati F, Ferraro A, et al. (2010). Identification of a new pathway for tumor progression: MicroRNA-181b up-regulation and CBX7 down-regulation by HMGA1 protein. Genes Cancer 1:210–24.
  • Pallante P, Terracciano L, Carafa V, et al. (2010). The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer (Oxford, England: 1990) 46:2304–13.
  • Pallante P, Forzati F, Federico A, et al. (2015). Polycomb protein family member CBX7 plays a critical role in cancer progression. Am J Cancer Res 5:1594–601.
  • Ni S, Wang H, Zhu X, et al. (2017). CBX7 suppresses cell proliferation, migration, and invasion through the inhibition of PTEN/Akt signaling in pancreatic cancer. Oncotarget 8:8010–21.
  • Federico A, Pallante P, Bianco M, et al. (2009). Chromobox protein homologue 7 protein, with decreased expression in human carcinomas, positively regulates E-cadherin expression by interacting with the histone deacetylase 2 protein. Cancer Res 69:7079–87.
  • Sepe R, Formisano U, Federico A, et al. (2015). CBX7 and HMGA1b proteins act in opposite way on the regulation of the SPP1 gene expression. Oncotarget 6:2680–92.
  • Onder TT, Gupta PB, Mani SA, et al. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68:3645–54.
  • Chun HW, Hong R. (2016). Significance of the hedgehog pathway-associated proteins Gli-1 and Gli-2 and the epithelial-mesenchymal transition-associated proteins Twist and E-cadherin in hepatocellular carcinoma. Oncol Lett 12:1753–62.
  • Hazan RB, Qiao R, Keren R, et al. (2004). Cadherin switch in tumor progression. Ann NY Acad Sci 1014:155–63.
  • Zeisberg M, Neilson EG. (2009). Biomarkers for epithelial-mesenchymal transitions. J Clin Investig 119:1429–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.