1,608
Views
10
CrossRef citations to date
0
Altmetric
Articles

Study of enhanced radiofrequency heating by pre-freezing tissue

, , , , , , & show all
Pages 79-89 | Received 21 Aug 2017, Accepted 12 May 2018, Published online: 04 Jun 2018

References

  • Tatli S, Tapan U, Morrison PR, et al. Radiofrequency ablation: technique and clinical applications. Diagn Interv Radiol. 2012;18:508–516.
  • Lencioni R, Crocetti L. Local-regional treatment of hepatocellular carcinoma. Radiology. 2012;262:43.
  • Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14:199–208.
  • Aghayev A, Tatli S. The use of cryoablation in treating liver tumors. Expert Rev Med Devices. 2014;11:41–52.
  • Joosten J, Jager G, Oyen W, et al. Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol. 2005;31:1152–1159.
  • Bhardwaj N, Gravante G, Strickland AD, et al. Cryotherapy of the liver: a histological review. Cryobiology. 2010;61:1–9.
  • Shady W, Petre EN, Gonen M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes – a 10-year experience at a single center. Radiology. 2016;278:601–611.
  • Ayav A, Germain A, Marchal F, et al. Radiofrequency ablation of unresectable liver tumors: factors associated with incomplete ablation or local recurrence. Am J Surg. 2010;200:435–439.
  • Mulier S, Ni Y, Jamart J, et al. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg. 2005;242:158–171.
  • Kunzli BM, Abitabile P, Maurer CA. Radiofrequency ablation of liver tumors: actual limitations and potential solutions in the future. World J Hepatol. 2011;3:8–14.
  • Zhang B, Moser M, Zhang E, et al. Radiofrequency ablation technique in the treatment of liver tumours: review and future issues. J Med Eng Technol. 2013;37:150–159.
  • Lisa X, Aili Z, Ping L, et al. Energy-based diagnostic and treatment techniques. IEEE Eng Med Biol Mag. 2008;27:72–77.
  • Zhu J, Zhang Y, Zhang A, et al. Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation. Sci Rep. 2016;6:27136.
  • He K, Liu P, Xu LX. The cryo-thermal therapy eradicated melanoma in mice by eliciting CD4+ T-cell-mediated antitumor memory immune response. Cell Death Dis. 2017;8:e2703–e270e.
  • Takahashi D, Nakamura H, Shinoda K, Fukumoto I. A study of the heating effect on mouse liver after cryosurgery. In: Magjarevic R, Nagel JH, editors. World congress on medical physics and biomedical engineering 2006; 2007; IFMBE Proceedings, vol 14. Berlin, Heidelberg: Springer; 3358–3361.
  • Shen Y, Liu P, Zhang A, et al. Study on tumor microvasculature damage induced by alternate cooling and heating. Ann Biomed Eng. 2008;36:1409–1419.
  • Shen Y, Zhang A, Xu LX. A study on mechanical damage of tumor microvasculature induced by alternate cooling and heating. J Thermal Sci Eng Appl. 2009;1:031002.
  • Hachisuka J, Doi K, Furue M. Combination cryosurgery with hyperthermia in the management of skin metastasis from breast cancer: a case report. Int J Surg Case Rep. 2012;3:68–69.
  • Ahmed M, Liu Z, Humphries S, et al. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Int J Hyperthermia. 2008;24:577.
  • Ng EYK, Jamil M. Parametric sensitivity analysis of radiofrequency ablation with efficient experimental design. Int J Thermal Sci. 2014;80:41–47.
  • Sun J, Zhang A, Xu LX. Evaluation of alternate cooling and heating for tumor treatment. Int J Heat Mass Transfer. 2008;51:5478–5485.
  • Breen MS, Lazebnik RS, Fitzmaurice M, et al. Radiofrequency thermal ablation: correlation of hyperacute MR lesion images with tissue response. J Magn Reson Imaging. 2004;20:475–486.
  • Onishi H, Matsushita M, Murakami T, et al. MR appearances of radiofrequency thermal ablation region: Histopathologic correlation with dog liver models and an autopsy case1. Acad Radiol. 2004;11:1180–1189.
  • Raman SS, Lu DS, Vodopich DJ, et al. Creation of radiofrequency lesions in a porcine model: correlation with sonography, CT, and histopathology. Am J Roentgenol. 2000;175:1253.
  • Liu Z, Lobo SM, Humphries S, et al. Radiofrequency tumor ablation: insight into improved efficacy using computer modeling. Am J Roentgenol. 2005;184:1347–1352.
  • Steendijk P, Mur G, Vdv E, et al. The four-electrode resistivity technique in anisotropic media: theoretical analysis and application on myocardial tissue in vivo. IEEE Trans Biomed Eng. 1993;40:1138–1148.
  • Kinouchi Y, Iritani T, Morimoto T, et al. Fast in vivo measurements of local tissue impedances using needle electrodes. Med Biol Eng Comput. 1997;35:486–492.
  • Trujillo M, Berjano E. Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int J Hyperthermia. 2013;29:590–597.
  • Rossmann C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit Rev Biomed Eng. 2014;42(6):467–492.
  • Schüder G, Pistorius G, Fehringer M, et al. Complete shutdown of microvascular perfusion upon hepatic cryothermia is critically dependent on local tissue temperature. Br J Cancer. 2000;82:794.
  • Plonsey R, Heppner DB. Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys. 1967;29:657–664.
  • Berjano EJ. Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. Biomed Eng Online. 2006;5:24.
  • Duck FA. Physical properties of tissue: a comprehensive reference book. London: Academic Press; 1990.
  • Valvano JW, Cochran JR, Diller KR. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int J Thermophys. 1985;6:301–311.
  • Grayson J. Internal calorimetry in the determination of thermal conductivity and blood flow. J Physiol (Lond). 1952;118:54–72.
  • Blomley MJ, Coulden R, Dawson P, et al. Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr. 1995;19:424.
  • Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences? Curr Probl Diagn Radiol. 2009;38:135.
  • Di Nardo W, Scorpecci A, Giannantonio S, et al. Safe use of bipolar radiofrequency induced thermotherapy (RFITT) for nasal surgery in patients with cochlear implants. Auris Nasus Larynx. 2011;38:739–742.
  • Ebbini ES, Umemura S, Ibbini M, et al. A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy. IEEE Trans Ultrason Ferroelect Freq Contr. 1988;35:561.
  • Zhang B, Moser MA, Zhang EM, et al. A new approach to feedback control of radiofrequency ablation systems for large coagulation zones. Int J Hyperthermia. 2016;33:367–377.
  • Schwan HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147.
  • Damez JL, Clerjon S, Abouelkaram S, et al. Dielectric behavior of beef meat in the 1-1500kHz range: simulation with the fricke/cole-cole model. Meat Sci. 2007;77:512–519.
  • Pegg DE. Mechanisms of freezing damage. Symp Soc Exp Biol. 1987;41:363–378.
  • Zurbuchen U, Holmer C, Kai SL, et al. Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: importance for therapy planning for the radiofrequency ablation of liver tumours. Int J Hyperthermia. 2010;26:26–33.
  • Sturesson C, Ivarsson K, Andersson-Engels S, et al. Changes in local hepatic blood perfusion during interstitial laser-induced thermotherapy of normal rat liver measured by interstitial laser Doppler flowmetry. Lasers Med Sci. 1999;14:143–149.