2,767
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Quality assurance guidelines for interstitial hyperthermia

ORCID Icon, , , , ORCID Icon, , , , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 276-293 | Received 30 May 2018, Accepted 24 Dec 2018, Published online: 24 Jan 2019

References

  • IAH. Available from: http://www.hyperthermie.org.
  • ESHO. Available from: www.esho.info
  • STM. Available from: http://www.thermaltherapy.org/eBusSFTM/.
  • Bruggmoser G. Some aspects of quality management in deep regional hyperthermia. Int J Hyperther. 2012;28:562–569.
  • Bruggmoser G, Bauchowitz S, Canters R, et al. Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia. Strahlenther Onkol. 2012;188:198–211.
  • Dobsicek Trefna H, Crezee H, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int J Hyperthermia. 2017;33:471–482.
  • Dobsicek Trefna H, Crezee J, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices. Strahlenther Onkol. 2017;193:351–366.
  • Emami B, Stauffer P, Dewhirst MW, et al. RTOG quality assurance guidelines for interstitial hyperthermia. Int J Radiat Oncol Biol Phys. 1991;20:1117–1124.
  • Stauffer PR, Diederich CJ, Seegenschmiedt MH. Interstitial heating technologies. In: Seegenschmiedt MH, Fessenden P, Vernon CC, editors. Thermoradiotherapy and thermochemotherapy: Volume 1, Biology, Physiology and Physics. Berlin, New York: Springer-Verlag; 1995. p. 279–320.
  • Visser AG, Chive M, Hand MW, et al. Interstitial and intracavitary hyperthermia. A Task Group Report of the European Society for Hyperthermic Oncology in cooperation with a COMAC-BME Concerted Action within the 4th Medical and Health Research Programme of the European Commission. Rome: Postgraduate school of Medical Physics University of Rome Tor Vergata: 1993.
  • Hand JW, Lagenduk JJW, Andersen JB, et al. Quality Assurance Guidelines for Esho Protocols. Int J Hyperther. 1989;5:421–428.
  • Sapareto SA, Corry PM. A proposed standard data file format for hyperthermia treatments. Int J Radiat Oncol Biol Phys. 1989;16:613–627.
  • Datta NR, Rogers S, Klingbiel D, et al. Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: a systematic review with conventional and network meta-analyses. Int J Hyperthermia. 2016;32:809–821.
  • Issels R, Kampmann E, Kanaar R, et al. Hallmarks of hyperthermia in driving the future of clinical hyperthermia as targeted therapy: translation into clinical application. Int J Hyperthermia. 2016;32:89–95.
  • Frey B, Ruckert M, Deloch L, et al. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev. 2017;280:231–248.
  • Dewhirst MW, Stauffer PR, Das SK, et al. Hyperthermia In: Gunderson L, Tepper J, editors. Clinical radiation oncology. 4th ed. Philladelphia: Elsevier; 2016. p. 381–398.
  • Hoffman RM, Monga M, Elliott SP, et al. Microwave thermotherapy for benign prostatic hyperplasia. Cochrane Database Syst Rev. 2012(9);CD004135.
  • Dewhirst MW, Vujaskovic Z, Jones E, et al. Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia. 2005;21:779–790.
  • Leopold KA, Dewhirst MW, Samulski TV, et al. Cumulative minutes with T90 greater than Tempindex is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Phys. 1993;25:841–847.
  • Oleson JR, Samulski TV, Leopold KA, et al. Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiation Oncol Biol Phys. 1993;25:289–297.
  • van Rhoon GC. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring?. Int J Hyperthermia. 2016;32:50–62.
  • Overgaard J. Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys. 1980;6:1507–1517.
  • Hulshof MCCM, Raaymakers BW, Lagendijk JJW, et al. A feasibility study of interstitial hyperthermia plus external beam radiotherapy in glioblastoma multiforme using the Multi Electrode Current Source (MECS) system. Int J Hyperthermia. 2004;20:451–463.
  • Overgaard J. The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys. 1989;16:535–549.
  • Adibzadeh F, Paulides MM, van Rhoon GC. SAR thresholds for electromagnetic exposure using functional thermal dose limits. Int J Hyperthermia. 2018;34:1248–1254.
  • Stauffer PR. Evolving technology for thermal therapy of cancer. Int J Hyperthermia. 2005;21:731–744.
  • Seegenschmiedt MH, Sauer R. Interstitial and intracavitary thermoradiotherapy. Berlin Heidelberg New York London, Paris, Tokyo, Hong Kong Barcelona, Budapest: Springer-Verlag; 1993.
  • Ryan TP. Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiation Oncol Biol Phys. 1991;21:403–413.
  • Panjehpour M, Overholt BF, Milligan AJ, et al. Nd:YAG laser-induced interstitial hyperthermia using a long frosted contact probe. Lasers Surg Med. 1990;10:16–24.
  • Astrahan MA, Norman A. A localized current field hyperthermia system for use with 192-iridium interstitial implants. Med Phys. 1982;9:419–424.
  • Corry PM, Martinez A, Armour EP, et al. Simultaneous hyperthermia and brachytherapy with remote afterloading. In: Martinez AA, Morton CT, Mould RF, editors. Brachytherapy HDR and LDR. Proceedings of the meeting “Remote Afterloading: State of the Art”; Colombia, MD, Dearborn, MI: Nucletron Corp; 1990. p. 193–204
  • Visser AG, Deurloo IKK, Levendag PC, et al. An Interstitial hyperthermia system at 27-Mhz. Int J Hyperthermia. 1989;5:265–276.
  • Kaatee RSJP, Crezee H, Kanis BP, et al. Spatial temperature control with a 27 MHz current source interstitial hyperthermia system. Int J Radiation Oncol Biol Phys. 1997;37:189–197.
  • Van der Koijk JF, Lagendijk JJW, Crezee J, et al. The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: importance of longitudinal control. Int J Hyperthermia. 1997;13:365–385.
  • Lesnicar H, Budihna M, Handl-Zeller L, et al. Clinical experience with water-heated interstitial hyperthermia system. Acta Chir Austriaca. 1992;24:214–216.
  • DeFord JA, Babbs CF, Patel UH, et al. Effective estimation and computer control of minimum tumour temperature during conductive interstitial hyperthermia. Int J Hyperthermia. 1991;7:441–453.
  • Stauffer PR, Cetas TC, Fletcher AM, et al. Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans Biomed Eng. 1984;31:76–90.
  • Tucker RD, Platz CE, Huidobro C, et al. Interstitial thermal therapy in patients with localized prostate cancer: histologic analysis. Urology. 2002;60:166–169.
  • Patel UH, DeFord JA, Babbs CF. Computer-aided design and evaluation of novel catheters for conductive interstitial hyperthermia. Med Biol Eng Comput. 1991;29:25–33.
  • Prionas SD, Kapp DS, Goffinet DR, et al. Thermometry of interstitial hyperthermia given as an adjuvant to brachytherapy for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 1994;28:151–162.
  • Mack CF, Stea B, Kittelson JM, et al. Interstitial thermoradiotherapy with ferromagnetic implants for locally advanced and recurrent neoplasms. Int J Radiat Oncol Biol Phys. 1993;27:109–115.
  • Lagendijk JJW, Visser AG, Kaatee RSJP, et al. Interestitial hyperthermia & treatment planning: the 27 MHz multi-electrode current source method. Nucletron-Odelft Activity Report No 6; 1995. p. 83–90.
  • Diederich CJ, Khalil IS, Stauffer PR, et al. Direct-coupled interstitial ultrasound applicators for simultaneous thermobrachytherapy: a feasibility study. Int J Hyperthermia. 1996;12:401–419.
  • Diederich CJ. Ultrasound applicators with integrated catheter-cooling for interstitial hyperthermia: theory and preliminary experiments. Int J Hyperthermia. 1996;12:279–297.
  • Nau WH, Diederich CJ, Stauffer PR. Directional power deposition from direct-coupled and catheter-cooled interstitial ultrasound applicators. Int J Hyperthermia. 2000;16:129–144.
  • Stauffer PR, Goldberg SN. Introduction: thermal ablation therapy. Int J Hyperthermia. 2004;20:671.
  • Diederich CJ. Thermal ablation and high-temperature thermal therapy: overview of technology and clinical implementation. Int J Hyperthermia. 2005;21:745–753.
  • Pieters BR, van der Grient JN, Blank LE, et al. Minimal displacement of novel self-anchoring catheters suitable for temporary prostate implants. Radiother Oncol. 2006;80:69–72.
  • van der Koijk JF, Crezee J, Lagendijk JJW. Thermal properties of capacitively coupled electrodes in interstitial hyperthermia. Phys Med Biol. 1998;43:139–153.
  • Kukielka AM, Hetnal M, Brandys P, et al. Interstitial hyperthermia of the prostate in combination with brachytherapy: an evaluation of feasibility and early tolerance. Strahlenther Onkol. 2013;189:467–475.
  • Hand JW, Trembly BS, Prior MV. Physics of interstitial hyperthermia: radiofrequency and hot water tube techniques. In: Urano M, Douple E, editors. Hyperthermia and oncology, vol 3. Interstitial Hyperthermia. Zeist: VSP; 1991. p. 99–134.
  • Handl-Zeller L, editor. Interstitial hyperthermia. Wien, New York: Springer-Verlag; 1992.
  • Strohbehn JW. Interstitial techniques for hyperthermia. In: Field SB, Franconi C, editors. Physics and technology of hyperthermia. Dordrecht, Boston, Lancaster: Martinus Nijhoff Publishers; 1987. p. 211–240.
  • Vrba J, Franconi C, Lapes M. Theoretical limits for the penetration depth of intracavitary applicators. Int J Hyperthermia. 1996;12:737–742.
  • Dutz S, Hergt R. Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia. 2013;29:790–800.
  • Cristoforetti L, Pontalti R, Cescatti L, et al. Quantitative colorimetric analysis of liquid crystal films (LCF) for phantom dosimetry in microwave hyperthermia. IEEE Trans Biomed Eng. 1993;40:1159–1165.
  • Babij TM, Hagmann MJ, Gottlieb CF, et al. Evaluation of heating patterns of microwave interstitial applicators using miniature electric field and fluoroptic temperature probes. Int J Hyperthermia. 1991;7:485–492.
  • Deardorff DL, Diederich CJ, Nau WH. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators. Med Phys. 2001;28:104–117.
  • Wilkinson DA, Saylor TK, Shrivastava PN, et al. Calorimetric evaluation of antennas used for microwave interstitial hyperthermia. Int J Hyperthermia. 1990;6:655–663.
  • Hartsgrove G, Kraszewski A, Surowiec A. Simulated biological materials for electromagnetic radiation absorption studies. Bioelectromagnetics. 1987;8:29–36.
  • de Bree J, van der Koijk JF, Lagendijk JJ. A 3-D SAR model for current source interstitial hyperthermia. IEEE Trans Biomed Eng. 1996;43:1038–1045.
  • Prakash P, Salgaonkar VA, Diederich CJ. Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning. Int J Hyperthermia. 2013;29:296–307.
  • Pisa S, Cavagnaro M, Piuzzi E, et al. Power density and temperature distributions produced by interstitial arrays of sleeved-slot antennas for hyperthermic cancer therapy. Ieee Trans Microwave Theory Techn. 2003;51:2418–2426.
  • Salgaonkar VA, Prakash P, Diederich CJ. Temperature superposition for fast computation of 3D temperature distributions during optimization and planning of interstitial ultrasound hyperthermia treatments. Int J Hyperthermia. 2012;28:235–249.
  • Raaymakers BW, Van Vulpen M, Lagendijk JJ, et al. Determination and validation of the actual 3D temperature distribution during interstitial hyperthermia of prostate carcinoma. Phys Med Biol. 2001;46:3115–3131.
  • van Vulpen M, Raaymakers BW, Lagendijk JJ, et al. Three-dimensional controlled interstitial hyperthermia combined with radiotherapy for locally advanced prostate carcinoma–a feasibility study. Int J Radiat Oncol Biol Phys. 2002;53:116–126.
  • Scott SJ, Prakash P, Salgaonkar V, et al. Interstitial ultrasound ablation of tumors within or adjacent to bone: contributions of preferential heating at the bone surface. Energy-based Treatment of Tissue and Assessment VII. Proc. SPIE. 2013;8584.
  • Chen X, Diederich CJ, Wootton JH, et al. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia. Int J Hyperthermia. 2010;26:39–55.
  • Myerson RJ, Moros EG, Diederich CJ, et al. Components of a hyperthermia clinic: recommendations for staffing, equipment, and treatment monitoring. Int J Hyperthermia. 2014;30:1–5.
  • Diederich C. Endocavitary and catheter-based ultrasound devices. In: Moros E, editor. Physics of thermal therapy. Boca Raton: CRC Press; 2013.
  • Pyrexar Medical Inc. “BSD-500 Features”. [cited 2019 Jan 8] Available from: http://www.pyrexar.com/hyperthermia/bsd-500.
  • Crezee J, der Koijk v, Kaatee Rsjp JF, Lagendijk JJW. Implications of using thermocouple thermometry in 27 MHz capacitively coupled interstitial hyperthermia. Phys Med Biol. 1997;42:637–650.
  • Stuecklschweiger G, Arian-Schad KS, Kapp DS, et al. Analysis of temperature distributions of interstitial hyperthermia using a hot water system. Int J Radiat Oncol Biol Phys. 1993;26:891–895.
  • Wootton JH, Prakash P, Hsu IC, et al. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer. Phys Med Biol. 2011;56:3967–3984.
  • Diederich CJ, Wootton J, Prakash P, et al. Catheter-based ultrasound hyperthermia with HDR brachytherapy for treatment of locally advanced cancer of the prostate and cervix. Proc SPIE Int Soc Opt Eng. 2011;7901:79010O.
  • Salgaonkar VA, Diederich CJ. Catheter-based ultrasound technology for image-guided thermal therapy: current technology and applications. Int J Hyperthermia. 2015;31:203–215.
  • Commission IE. IEC 61161 Ultrasonics - Power measurement - Radiation force balances and performance requirements Edition 3.0. Geneva, Switzerland 2013.
  • Wootton JH, Hsu IC, Diederich CJ. Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma. Med Phys. 2011;38:598–611.
  • Crezee H, Inman BA. The use of hyperthermia in the treatment of bladder cancer. Int J Hyperthermia. 2016;32:349–350.
  • van Valenberg H, Colombo R, Witjes F. Intravesical radiofrequency-induced hyperthermia combined with chemotherapy for non-muscle-invasive bladder cancer. Int J Hyperthermia. 2016;32:351–362.
  • Sousa A, Pineiro I, Rodriguez S, et al. Recirculant hyperthermic IntraVEsical chemotherapy (HIVEC) in intermediate-high-risk non-muscle-invasive bladder cancer. Int J Hyperthermia. 2016;32:374–380.
  • Stauffer PR, van Rhoon GC. Overview of bladder heating technology: matching capabilities with clinical requirements. Int J Hyperthermia. 2016;32:407–416.
  • Schooneveldt G, Bakker A, Balidemaj E, et al. Thermal dosimetry for bladder hyperthermia treatment. An overview. Int J Hyperthermia. 2016;32:417–433.
  • van der Heijden AG, Dewhirst MW. Effects of hyperthermia in neutralising mechanisms of drug resistance in non-muscle-invasive bladder cancer. Int J Hyperthermia. 2016;32:434–445.
  • Kuijpers AM, Mirck B, Aalbers AG, et al. Cytoreduction and HIPEC in the Netherlands: nationwide long-term outcome following the Dutch protocol. Ann Surg Oncol. 2013;20:4224–4230.
  • Eight Medical Corporation.
  • Therma Solutions Inc. [cited 2018 Jan 8]. Available from: https://www.thermasolutions.com/.
  • Gamida. [cited 2018 Jan 8]. Available from: http://www.gamida.net/.
  • Rand. [cited 2018 Jan 8]. Available from: http://rand-biotech.com/.
  • Diederich CJ, Hynynen K. The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study. Med Phys. 1990;17:626–634.
  • Hurwitz MD, Hansen JL, Prokopios-Davos S, et al. Hyperthermia combined with radiation for the treatment of locally advanced prostate cancer: long-term results from Dana-Farber Cancer Institute study 94-153. Cancer. 2011;117:510–516.
  • Hurwitz MD, Kaplan ID, Hansen JL, et al. Hyperthermia combined with radiation in treatment of locally advanced prostate cancer is associated with a favourable toxicity profile. Int J Hyperthermia. 2005;21:649–656.
  • Hurwitz MD, Kaplan ID, Hansen JL, et al. Association of rectal toxicity with thermal dose parameters in treatment of locally advanced prostate cancer with radiation and hyperthermia. Int J Radiat Oncol Biol Phys. 2002;53:913–918.