1,301
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of different 4D CT-Perfusion algorithms to visualize lesions after microwave ablation in an in vivo porcine model

ORCID Icon, , , , , , , & show all
Pages 1097-1106 | Received 05 Jun 2019, Accepted 04 Oct 2019, Published online: 14 Nov 2019

References

  • Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. RadioGraphics. 2005;25(suppl_1):S69–S83.
  • Marin D, Cappabianca S, Serra N, et al. CT appearance of hepatocellular carcinoma after locoregional treatments: a comprehensive review. Gastroenterol Res Prac. 2015;2015:1.
  • Moon S, Park S, Lee S-K, et al. Comparison of elastography, contrast-enhanced ultrasonography, and computed tomography for assessment of lesion margin after radiofrequency ablation in livers of healthy dogs. Am J Veter Res. 2017;78(3):295–304.
  • DeWall RJ, Varghese T, Brace CL. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography. Med Phys. 2012;39(11):6692–6700.
  • Thieme SF, Vahldiek JL, Tummler K, et al. Value or waste: perfusion imaging following radiofrequency ablation – early experience. Clin Hemorheol Microcirc. 2015;61(2):323–331.
  • Gemeinhardt O, Poch FG, Hiebl B, et al. Comparison of bipolar radiofrequency ablation zones in an in vivo porcine model: correlation of histology and gross pathological findings. Clin Hemorheol Microcirc. 2017;64(3):491–499.
  • Braga L, Semelka RC, Pedro MS, et al. Post-treatment malignant liver lesions: MR imaging. Magn Reson Imaging Clin N Am. 2002;10(1):53–73.
  • Puijk RS, Ruarus AH, Scheffer HJ, et al. Percutaneous liver tumour ablation: image guidance, endpoint assessment, and quality control. Can Assoc Radiol J. 2018;69(1):51–62.
  • Ippolito D, Bonaffini PA, Capraro C, et al. Viable residual tumor tissue after radiofrequency ablation treatment in hepatocellular carcinoma: evaluation with CT perfusion. Abdom Imaging. 2013;38(3):502–510.
  • Kudo K, Sasaki M, Ogasawara K, et al. Difference in tracer delay–induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms. Radiology. 2009;251(1):241–249.
  • Kudo K, Sasaki M, Yamada K, et al. Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients. Radiology. 2010;254(1):200–209.
  • Sanelli PC, Lev MH, Eastwood JD, et al. The effect of varying user-selected input parameters on quantitative values in CT perfusion maps1. Acad Radiol. 2004;11(10):1085–1092.
  • Deniffel D, Boutelier T, Labani A, et al. Computed tomography perfusion measurements in renal lesions obtained by Bayesian estimation, advanced singular-value decomposition deconvolution, maximum slope, and Patlak models: intermodel agreement and diagnostic accuracy of tumor classification. Invest Radiol. 2018;53(8):477–485.
  • Guyennon A, Mihaila M, Palma J, et al. Perfusion characterization of liver metastases from endocrine tumors: computed tomography perfusion. World J Radiol. 2010;2(11):449.
  • Piper J, Ikeda Y, Fujisawa Y, et al. Objective evaluation of the correction by non-rigid registration of abdominal organ motion in low-dose 4D dynamic contrast-enhanced CT. Phys Med Biol. 2012;57(6):1701–1715.
  • Lell MM, Wildberger JE, Alkadhi H, et al. Evolution in computed tomography: the battle for speed and dose. Invest Radiol. 2015;50(9):629–644.
  • Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–1128.
  • Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophotonics international. 2004;11(7):36–42.
  • Schmid B, Schindelin J, Cardona A, et al. A high-level 3D visualization API for Java and ImageJ. BMC bioinformatics. 2010;11(1):274.
  • R Core Team. 2017. [cited 2019 Oct 25]. Accessed at http://www.R-project.org/.
  • Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.
  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiroprac Med. 2016;15(2):155–163.
  • Wu P-H, Borden Z, Brace CL. Ablation zone visualization enhancement by periodic contrast-enhancement computed tomography during microwave ablation. Med Phys. 2017;44(6):2132–2140.
  • Kim SH, Kamaya A, Willmann JK. CT perfusion of the liver: principles and applications in oncology. Radiology. 2014;272(2):322–344.
  • Lui YW, Tang ER, Allmendinger AM, et al. Evaluation of CT perfusion in the setting of cerebral ischemia: patterns and pitfalls. Am J Neuroradiol. 2010;31(9):1552–1563.
  • Winterdahl M, Sørensen M, Keiding S, et al. Hepatic blood perfusion estimated by dynamic contrast-enhanced computed tomography in pigs: limitations of the slope method. Invest Radiol. 2012;47(10):588–595.
  • Liu Y, Matsui O. Changes of intratumoral microvessels and blood perfusion during establishment of hepatic metastases in mice. Radiology. 2007;243(2):386–395.
  • Ng CS, Chandler AG, Wei W, et al. Effect of dual vascular input functions on CT perfusion parameter values and reproducibility in liver tumors and normal liver. J Comp Assist Tomography. 2012;36(4):388–393.
  • Talakić E, Schaffellner S, Kniepeiss D, et al. CT perfusion imaging of the liver and the spleen in patients with cirrhosis: is there a correlation between perfusion and portal venous hypertension? Eur Radiol. 2017;27(10):4173–4180.
  • Swindle MM, Makin A, Herron AJ, et al. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–356.
  • Wu D, Tan M, Zhou M, et al. Liver computed tomographic perfusion in the assessment of microvascular invasion in patients with small hepatocellular carcinoma. Invest Radiol. 2015;50(4):188–194.