2,955
Views
37
CrossRef citations to date
0
Altmetric
Review Article

Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia

, ORCID Icon, , , &
Pages 15-27 | Received 19 Apr 2019, Accepted 10 Dec 2019, Published online: 09 Jan 2020

References

  • Dewhirst MW, Vujaskovic Z, Jones E, et al. Re-setting the biologic rationale for thermal therapy. Int J Hyperthermia. 2005;21:779–790.
  • Lee ER. Electromagnetic superficial heating technology. In: Seegenschmiedt MH, editor. Thermoradiotherapy and thermochemotherapy. Berlin: Springer Verlag; 1995. p. 193–217.
  • Wust P, Seebass M, Nadobny J, Felix R. Electromagnetic deep heating technology. In: Seegenschmiedt MH, Vernon CC, editors. Principles and practice of thermoradiotherapy and thermochemotherapy. Berlin: Springer Verlag; 1995. p. 219–251.
  • Datta NR, Puric E, Klingbiel D, et al. Hyperthermia and radiation therapy in locoregional recurrent breast cancers: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys. 2016;94:1073–1087.
  • Datta NR, Rogers S, Klingbiel D, et al. Hyperthermia and radiotherapy with or without chemotherapy in locally advanced cervical cancer: a systematic review with conventional and network meta-analyses. Int J Hyperthermia. 2016;32:809–821.
  • Datta NR, Rogers S, Ordóñez SG, et al. Hyperthermia and radiotherapy in the management of head and neck cancers: a systematic review and meta-analysis. Int J Hyperthermia. 2016;32:31–40.
  • Oleson JR, Dewhirst MW, Harrelson JM, et al. Tumor temperature distributions predict hyperthermia effect. Int J Radiat Oncol Biol Phys. 1989;16:559–570.
  • Issels RD, Prenninger SW, Nagele A, et al. Ifosfamide plus etoposide combined with regional hyperthermia in patients with locally advanced sarcomas: a phase II study. JCO. 1990;8:1818–1829.
  • Leopold KA, Dewhirst MW, Samulski TV, et al. Cumulative minutes with T90 greater than tempindex is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Phys. 1993;25:841–847.
  • Hildebrandt B. The cellular and molecular basis of hyperthermia. Crit Rev Oncol/Hematol. 2002;43:33–56.
  • Cihoric N, Tsikkinis A, van Rhoon G, et al. Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials. gov registry. Int J Hyperthermia. 2015;31:609–614.
  • Issels RD, Lindner LH, Verweij J, et al; for the European Organization for the Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group and the European Society for Hyperthermic Oncology. Effect of neoadjuvant chemotherapy plus regional hyperthermia on long-term outcomes among patients with localized high-risk soft tissue sarcoma: the EORTC 62961-ESHO 95 randomized clinical trial. JAMA Oncol. 2018;4:483–492.
  • Issels RD, Lindner LH, Verweij J, et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 2010;11:561–570.
  • Huilgol NG, Gupta S, Sridhar CR. Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: a report of randomized trial. J Can Res Ther. 2010;6:492.
  • van der Zee J, González D, van Rhoon GC, et al. Dutch Deep Hyperthermia Group. Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial. Lancet. 2000;355:1119–1125.
  • Murbach M, Neufeld E, Capstick M, et al. Thermal tissue damage model analyzed for different whole-body SAR and scan durations for standard MR body coils. Magn Reson Med. 2014;71:421–431.
  • Vaupel PW, Kelleher DK. Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: heterogeneity is the key issue. Int J Hyperthermia. 2010;26:211–223.
  • Vujaskovic Z, Song CW. Physiological mechanisms underlying heat-induced radiosensitization. Int J Hyperthermia. 2004;20:163–174.
  • Song CW, Lokshina A, Rhee JG, et al. Implication of blood flow in hyperthermic treatment of tumors. IEEE Trans Biomed Eng. 1984;BME-31:9–16.
  • Winter L, Oberacker E, Paul K, et al. Magnetic resonance thermometry: methodology, pitfalls and practical solutions. Int J Hyperthermia. 2016;32:63–75.
  • Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications – physical principles and practical considerations. Prog Nuclear Magn Reson Spectrosc. 2019;110:34–61.
  • Van Rhoon GC, Wust P. Introduction: non-invasive thermometry for thermotherapy. Int J Hyperthermia. 2005;21:489–495.
  • Bowman RR. A probe for measuring temperature in radio-frequency-heated material. IEEE Trans Microwave Theory Techn. 1976;24:43–45.
  • Christensen DA. A new nonperturbing temperature probe using semiconductor band edge shift. J Bioeng. 1977;1:541–545.
  • Wickersheim KA, Alves RB. Recent advances in optical-temperature measurement. Ind Res Dev. 1979;21:82–89.
  • Van Der Zee J, Peer-Valstar JN, Rietveld PJ, et al. Practical limitations of interstitial thermometry during deep hyperthermia. Int J Radiat Oncol Biol Phys. 1998;40:1205–1212.
  • Wust P, Gellermann J, Harder C, et al. Rationale for using invasive thermometry for regional hyperthermia of pelvic tumors. Int J Radiat Oncol Biol Phys. 1998;41:1129–1137.
  • Parker DL, Smith V, Sheldon P, et al. Temperature distribution measurements in two‐dimensional NMR imaging. Med Phys. 1983;10:321–325.
  • De Poorter J, et al. The proton-resonance-frequency-shift method compared with molecular diffusion for quantitative measurement of two-dimensional time-dependent temperature distribution in a phantom. J Magn Reson Ser B. 1994;103:234–241.
  • Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34:814–823.
  • Poorter JD. Noninvasive mri thermometry with the proton-resonance frequency method - study of susceptibility effects. Magn Reson Med. 1995;34:359–367.
  • Le Bihan D, Delannoy J, Levin RL. Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology. 1989;171:853–857.
  • Lüdemann L, Wlodarczyk W, Nadobny J, et al. Non-invasive magnetic resonance thermography during regional hyperthermia. Int J Hyperthermia. 2010;26:273–282.
  • Rieke V, Pauly KB. MR thermometry. J Magn Reson Imaging. 2008;27:376–390.
  • Baron P, Ries M, Deckers R, et al. In vivo T2‐based MR thermometry in adipose tissue layers for high‐intensity focused ultrasound near‐field monitoring. Magn Reson Med. 2014;72:1057–1064.
  • McDannold N. Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: review of validation studies. Int J Hyperthermia. 2005;21:533–546.
  • Hindman JC. Proton resonance shift of water in the gas and liquid states. J Chem Phys. 1966;44:4582–4592.
  • Vigen KK, Daniel BL, Pauly JM, et al. Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion. Magn Reson Med. 2003;50:1003–1010.
  • Rieke V, Vigen KK, Sommer G, et al. Referenceless PRF shift thermometry. Magn Reson Med. 2004;51:1223–1231.
  • Gellermann J, Wlodarczyk W, Feussner A, et al. Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia. 2005;21:497–513.
  • Grissom WA, Rieke V, Holbrook AB, et al. Hybrid referenceless and multibaseline subtraction MR thermometry for monitoring thermal therapies in moving organs. Med Phys. 2010;37:5014–5026.
  • Gellermann J, Wlodarczyk W, Ganter H, et al. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom. Int J Radiat Oncol Biol Phys. 2005;61:267–277.
  • Gellermann J, Weihrauch M, Cho CH, et al. Comparison of MR‐thermography and planning calculations in phantoms. Med Phys. 2006;33:3912–3920.
  • Mulder HT, Curto S, Paulides MM, et al. Systematic quality assurance of the BSD2000-3D MR-compatible hyperthermia applicator performance using MR temperature imaging. Int J Hyperthermia. 2018;35:305–313.
  • Gellermann J, Hildebrandt B, Issels R, et al. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer. 2006;107:1373–1382.
  • Gellermann J, Wlodarczyk W, Hildebrandt B, et al. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 tesla hybrid system. Cancer Res. 2005;65:5872–5880.
  • Weihrauch M, Wust P, Weiser M, et al. Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR‐HT system. Med Phys. 2007;34:4717–4725.
  • Delannoy J, LeBihan D, Hoult DI, et al. Hyperthermia system combined with a magnetic resonance imaging unit. Med Phys. 1990;17:855–860.
  • Delannoy J, Chen C-N, Turner R, et al. Noninvasive temperature imaging using diffusion MRI. Magn Reson Med. 1991;19:333–339.
  • Carter DL, MacFall JR, Clegg ST, et al. Magnetic resonance thermometry during hyperthermia for human high-grade sarcoma. Int J Radiat Oncol Biol Phys. 1998;40:815–822.
  • Craciunescu OI, Stauffer PR, Soher BJ, et al. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Med Phys. 2009;36:4848–4858.
  • Numan WCM, Hofstetter LW, Kotek G, et al. Exploration of MR-guided head and neck hyperthermia by phantom testing of a modified prototype applicator for use with proton resonance frequency shift thermometry. Int J Hyperthermia. 2014;30:184–191.
  • Paulides MM, Bakker JF, Hofstetter LW, et al. Laboratory prototype for experimental validation of MR-guided radiofrequency head and neck hyperthermia. Phys Med Biol. 2014;59:2139–2154.
  • Paulides MM, Bakker JF, van Rhoon GC. Electromagnetic head-and-neck hyperthermia applicator: experimental phantom verification and FDTD model. Int J Radiat Oncol Biol Phys. 2007;68:612–620.
  • Tarasek MR, Pellicer R, Hofstetter LW, et al. Validation of MR thermometry: method for temperature probe sensor registration accuracy in head and neck phantoms. Int J Hyperthermia. 2014;30:142–149.
  • Paulides MM, Drizdal T, Van Rhoon GC, et al. Novel applicator design for MR guided RF hyperthermia in head and neck cancers: heating performance and RF coupling. Paris (France): International Society for Magnetic Resonance in Medicine (ISMRM); 2018.
  • Kim KS, Lee SY. Nanoparticle-mediated radiofrequency capacitive hyperthermia: a phantom study with magnetic resonance thermometry. Int J Hyperthermia. 2015;31:831–839.
  • Kim KS, Hernandez D, Lee SY. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation. Biomed Eng Online. 2015;14:95.
  • Hernandez D, Kim KS, Michel E, et al. Correction of B0 drift effects in magnetic resonance thermometry using magnetic field monitoring technique. Concepts Magn Reson. 2016;46B:81–89.
  • Hoffmann W, Rhein KH, Wojcik F, et al. Performance and use of current sheet antennae for RF-hyperthermia of a phantom monitored by 3 tesla MR-thermography. Int J Hyperthermia. 2002;18:454–471.
  • Nadobny J, Wlodarczyk W, Westhoff L, et al. Development and evaluation of a three-dimensional hyperthermia applicator with water-coated antennas (WACOA). Med Phys. 2003;30:2052–2064.
  • Nadobny J, Wlodarczyk W, Westhoff L, et al. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets. Ieee Trans Biomed Eng. 2005;52:505–519.
  • Samulski TV, MacFall J, Zhang Y, et al. Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. Int J Hyperthermia. 1992;8:819–829.
  • MacFall JR, Prescott DM, Charles HC, et al. 1H MRI phase thermometry in vivo in canine brain, muscle, and tumor tissue. Med Phys. 1996;23:1775–1782.
  • MacFall J, Prescott DM, Fullar E, et al. Temperature dependence of canine brain tissue diffusion coefficient measured in vivo with magnetic resonance echo-planar imaging. Int J Hyperthermia. 1995;11:73–86.
  • Samulski TV, Clegg ST, Das S, et al. Application of new technology in clinical hyperthermia. Int J Hyperthermia. 1994;10:389–394.
  • Qiu B, El-Sharkawy A-M, Paliwal V, et al. Simultaneous radiofrequency (RF) heating and magnetic resonance (MR) thermal mapping using an intravascular MR imaging/RF heating system. Magn Reson Med. 2005;54:226–230.
  • Demura K, Morikawa S, Murakami K, et al. An easy-to-use microwave hyperthermia system combined with spatially resolved MR temperature maps: phantom and animal studies. J Surg Res. 2006;135:179–186.
  • Curto S, Faridi P, Shrestha TB, et al. An integrated platform for small-animal hyperthermia investigations under ultra-high-field MRI guidance. Int J Hyperthermia. 2018;34:341–351.
  • Raaijmakers EAL, Mestrom RMC, Sumser K, et al. An MR-compatible antenna and application in a murine superficial hyperthermia applicator. Int J Hyperthermia. 2018;34:697–703.
  • Paulides MM, Mestrom RMC, Salim G, et al. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators. Phys Med Biol. 2017;62:1831–1847.
  • Sumser K, Geerman A, Haeck J, et al. Development and in vivo validation of an MRCompatible temperature controllable superficial hyperthermia applicator for small animal studies. Proceedings of the 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med); 2018 Sep 10–13; Split, Croatia. IEEE; 2018.
  • Kowalski ME, Behnia B, Webb AG, et al. Optimization of electromagnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation. IEEE Trans Biomed Eng. 2002;49:1229–1241.
  • Kowalski ME, Jin JM. Model-based optimization of phased arrays for electromagnetic hyperthermia. IEEE Trans Microwave Theory Techn. 2004;52:1964–1977.
  • Yeo D YX, Wu J, Hofstetter LW, et al. Investigation of a dual-function applicator for RF hyperthermia and MRI. Aarhus (Denmark): European Society for Hyperthermia Oncology (ESHO); 2011.
  • Winter L, Özerdem C, Hoffmann W, et al. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla. PLoS One. 2013;8:e61661.
  • Winter L, Oezerdem C, Hoffmann W, et al. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Radiat Oncol. 2015;10:201.
  • Guérin B, Villena JF, Polimeridis AG, et al. Computation of ultimate SAR amplification factors for radiofrequency hyperthermia in non-uniform body models: impact of frequency and tumour location. Int J Hyperthermia. 2018;34:87–100.
  • ASTM F2052-15, Standard Test Method for Measurement of Magnetically Induced Displacement Force on Medical Devices in the Magnetic Resonance Environment. West Conshohocken (PA): American Society for Testing and Materials International; 2015. Available from: http://www.astm.org/cgi-bin/resolver.cgi?F2052-15
  • ASTM F2213-17, Standard Test Method for Measurement of Magnetically Induced Torque on Medical Devices in the Magnetic Resonance Environment. West Conshohocken (PA): ASTM International; 2017. Available from: http://www.astm.org/cgi-bin/resolver.cgi?F2213-17
  • ASTM F2182-11a, Standard Test Method for Measurement of Radio Frequency Induced Heating On or Near Passive Implants During Magnetic Resonance Imaging. West Conshohocken (PA): ASTM International; 2011. Available from: http://www.astm.org/cgi-bin/resolver.cgi?F2182-11a
  • ISO. ISO/TS 10974:2018 Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. 2018.
  • Dietrich O, Raya JG, Reeder SB, et al. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26:375–385.
  • Sijbers J, den Dekker AJ, Van Audekerke J, et al. Estimation of the noise in magnitude MR images. Magn Reson Imaging. 1998;16:87–90.
  • Reeder SB, Wintersperger BJ, Dietrich O, et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med. 2005;54:748–754.
  • Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med. 2005;54:1439–1447.
  • Jafar M, Jafar YM, Dean C, et al. Assessment of geometric distortion in six clinical scanners using a 3D-printed grid phantom. J Imaging. 2017;3:28.
  • Wang D, Doddrell DM. Geometric distortion in structural magnetic resonance imaging. CMIR. 2005;1:49–60.
  • Tan J, Mougenot C, Pichardo S, et al. Motion compensation using principal component analysis and projection onto dipole fields for abdominal magnetic resonance thermometry. Magn Reson Med. 2019;81:195–207.
  • de Senneville BD, Mougenot C, Quesson B, et al. MR thermometry for monitoring tumor ablation. Eur Radiol. 2007;17:2401–2410.
  • Bour P, Ozenne V, Marquet F, et al. Evaluation of 2D simultaneous multi-slice EPI at 1.5T for MR-thermometry in presence of motion. Paris (France): International Society of Magnetic Resonance in Medicine; 2018.