1,514
Views
12
CrossRef citations to date
0
Altmetric
Article

Standardization of patient modeling in hyperthermia simulation studies: introducing the Erasmus Virtual Patient Repository

ORCID Icon, ORCID Icon, , , ORCID Icon, , & show all
Pages 608-616 | Received 12 Dec 2019, Accepted 19 May 2020, Published online: 09 Jun 2020

References

  • Datta NR, Ordóñez SG, Gaipl US, et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9):742–753.
  • Datta NR, Rogers S, Ordóñez SG, et al. Hyperthermia and radiotherapy in the management of head and neck cancers: a systematic review and meta-analysis. Int J Hyperthermia. 2016;32(1):31–40.
  • Kampinga HH. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia. 2006;22(3):191–196.
  • Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol). 2007;19(6):418–426.
  • Issels RD, Lindner LH, Ghadjar P, et al. 13LBA improved overall survival by adding regional hyperthermia to neo-adjuvant chemotherapy in patients with localized high-risk soft tissue sarcoma (HR-STS): long-term outcomes of the EORTC 62961/ESHO randomized phase III study. Eur J Cancer. 2015;51:S716.
  • Sherar M, Liu F-F, Pintilie M, et al. Relationship between thermal dose and outcome in thermoradiotherapy treatments for superficial recurrences of breast cancer: data from a phase III trial. Int J Radiat Oncol Biol Phys. 1997;39(2):371–380.
  • Thrall DE, LaRue SM, Yu D, et al. Thermal dose is related to duration of local control in canine sarcomas treated with thermoradiotherapy. Clin Cancer Res. 2005;11(14):5206–5214.
  • Franckena M, Fatehi D, de Bruijne M, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 2009;45(11):1969–1978.
  • Oei AL, Vriend LEM, Crezee J, et al. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol. 2015;10(1):165.
  • van den Tempel N, Zelensky A, Odijk H, et al. On the mechanism of hyperthermia-induced BRCA2 protein degradation. Cancers. 2019;11(1):97.
  • Paulides MM, Stauffer PR, Neufeld E, et al. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia. 2013;29(4):346–357.
  • Caon M. Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys. 2004;42(4):229–235.
  • Iacono MI, Neufeld E, Akinnagbe E, et al. MIDA: a multimodal imaging-based detailed anatomical model of the human head and neck. PLOS One. 2015;10(4):e0124126.
  • Duan L, Cui S, Xia L. Research on human model construction and electric shock simulation based on difference image and finite element analysis. 2016 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers; 2016.
  • Li T, Li Y, Sun Y, et al. Effect of head model on Monte Carlo modeling of spatial sensitivity distribution for functional near-infrared spectroscopy. J Innov Opt Health Sci. 2015;8(5):1550024.
  • Guérin B, Villena JF, Polimeridis AG, et al. Computation of ultimate SAR amplification factors for radiofrequency hyperthermia in non-uniform body models: impact of frequency and tumour location. Int J Hyperthermia. 2018;34(1):87–100.
  • Bevacqua MT, Bellizzi GG, Crocco L, et al. A method for quantitative imaging of electrical properties of human tissues from only amplitude electromagnetic data. Inverse Prob. 2019;35(2):025006.
  • Bevacqua MT, Bellizzi GG, Isernia T, et al. A method for effective permittivity and conductivity mapping of biological scenarios via segmented contrast source inversion. Prog Electromagnet Res. 2019;164:1–15.
  • Arayeshnia A, Keshtkar A, Amiri S. Realistic human head voxel model for brain microwave imaging. 2017 Iranian Conference on Electrical Engineering (ICEE). IEEE; 2017.
  • Paulides MM, Mestrom RMC, Salim G, et al. A printed Yagi-Uda antenna for application in magnetic resonance thermometry guided microwave hyperthermia applicators. Phys Med Biol. 2017;62(5):1831–1847.
  • Dobšíček Trefná H, Vrba J, Persson M. Evaluation of a patch antenna applicator for time reversal hyperthermia. Int J Hyperthermia. 2010;26(2):185–197.
  • Vrba D, Rodrigues DB, Vrba J Jr., et al. Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments. Prog Electromagnet Res. 2016;156:1–12.
  • Paulides MM, Numan WCM, Drizdal T, et al. Feasibility of MRI-guided hyperthermia treatment of head and neck cancer. The 8th European Conference on Antennas and Propagation (EuCAP 2014). IEEE; 2014.
  • Winter L, Özerdem C, Hoffmann W, et al. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. PLOS One. 2013;8(4):e61661.
  • Weihrauch M, Wust P, Weiser M, et al. Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system. Med Phys. 2007;34(12):4717–4725.
  • Bellizzi GG, et al. The potential of constrained SAR focusing for hyperthermia treatment planning: analysis for the head & neck region. Phys Med Biol. 2018;64(1):015013.
  • Bellizzi GG, Paulides MM, Drizdal T, et al. Sparsity promoted antenna selection in hyperthermia treatment planning. 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med). IEEE; 2018.
  • Bellizzi GG, Crocco L, Battaglia GM, et al. Multi-frequency constrained SAR focusing for patient specific hyperthermia treatment. IEEE J Electromagn RF Microw Med Biol. 2017;1(2):74–80.
  • Rijnen Z, Bakker JF, Canters RAM, et al. Clinical integration of software tool VEDO for adaptive and quantitative application of phased array hyperthermia in the head and neck. Int J Hyperthermia. 2013;29(3):181–193.
  • Zhao L, Ye Q, Wu K-L, et al. A new high-resolution electromagnetic human head model: a useful resource for a new specific-absorption-rate assessment model. IEEE Antennas Propag Mag. 2016;58(5):32–42.
  • Taleb B, Khadour A, Bitar A. Reconstruction of head-to-knee voxel model for Syrian adult male of average height and weight. Egypt J Radiol Nucl Med. 2015;46(2):491–497.
  • Zastrow E, Davis SK, Lazebnik M, et al. Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Trans Biomed Eng. 2008;55(12):2792–2800.
  • Wang Z, Xiao X, Song H, et al. Development of anatomically realistic numerical breast phantoms based on T1- and T2-weighted MRIs for microwave breast cancer detection. Antennas Wirel Propag Lett. 2014;13:1757–1760.
  • Zankl M, Wittmann A. The adult male voxel model “Golem” segmented from whole-body CT patient data. Radiat Environ Biophys. 2001;40(2):153–162.
  • Zubal IG, Harrell CR, Smith EO, et al. Computerized three-dimensional segmented human anatomy. Med Phys. 1994;21(2):299–302.
  • Gosselin M-C, Neufeld E, Moser H, et al. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0. Phys Med Biol. 2014;59(18):5287–5303.
  • Christ A, Kainz W, Hahn EG, et al. The Virtual Family-development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol. 2010;55(2):N23–N38.
  • Fill UA, Zankl M, Petoussi-Henss N, et al. Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys. 2004;86(3):253–272.
  • Kok HP, Crezee J. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia. 2017;33(4):378–386.
  • de Bruijne M, Wielheesen DHM, van der Zee J, et al. Benefits of superficial hyperthermia treatment planning: five case studies. Int J Hyperthermia. 2007;23(5):417–429.
  • Trujillo-Romero CJ, Paulides MM, Drizdal T, et al. Impact of silicone and metal port-a-cath implants on superficial hyperthermia treatment quality. Int J Hyperthermia. 2015;31(1):15–22.
  • De Greef M, Kok HP, Bel A, et al. 3D versus 2D steering in patient anatomies: a comparison using hyperthermia treatment planning. Int J Hyperthermia. 2011;27(1):74–85.
  • Verduijn GM, de Wee EM, Rijnen Z, et al. Deep hyperthermia with the HYPERcollar system combined with irradiation for advanced head and neck carcinoma – a feasibility study. Int J Hyperthermia. 2018;34(7):994–1001.
  • Ribeiro IVB, van Holthe N, Van Rhoon G, et al. Impact of segmentation detail in hyperthermia treatment planning: comparison between detailed and clinical tissue segmentation. 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med). IEEE; 2018.
  • Ribeiro IVB. Potential impact of MR-only treatment planning for MR guided deep pelvic hyperthermia. 33rd Annual Meeting of The European Society For Hyperthermic Oncology; 2019.
  • Fortunati V, Verhaart RF, van der Lijn F, et al. Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling. Med Phys. 2013;40(7):071905.
  • Verhaart RF, Fortunati V, Verduijn GM, et al. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation. Radiother Oncol. 2014;111(1):158–163.
  • Verhaart RF, Fortunati V, Verduijn GM, et al. The relevance of MRI for patient modeling in head and neck hyperthermia treatment planning: a comparison of CT and CT‐MRI based tissue segmentation on simulated temperature. Med Phys. 2014;41(12):123302.
  • Burnet NG, Thomas SJ, Burton KE, et al. Defining the tumour and target volumes for radiotherapy. Cancer Imaging. 2004;4(2):153–161.
  • Canters RAM, Paulides MM, Franckena MF, et al. Implementation of treatment planning in the routine clinical procedure of regional hyperthermia treatment of cervical cancer: an overview and the Rotterdam experience. Int J Hyperthermia. 2012;28(6):570–581.
  • Goddard M. The EU General Data Protection Regulation (GDPR): European regulation that has a global impact. Int J Market Res. 2017;59(6):703–705.
  • Turner PF, Tumeh A, Schaefermeyer T. BSD-2000 approach for deep local and regional hyperthermia: physics and technology. Strahlenther Onkol. 1989;165(10):738–741.
  • Van Rhoon GC, Van Der Heuvel DJ, Ameziane A, et al. Characterization of the SAR-distribution of the Sigma-60 applicator for regional hyperthermia using a Schottky diode sheet. Int J Hyperthermia. 2003;19(6):642–654.
  • Mulder HT, Curto S, Paulides MM, et al. Systematic quality assurance of the BSD2000-3D MR-compatible hyperthermia applicator performance using MR temperature imaging. Int J Hyperthermia. 2018;35(1):305–313.
  • Canters RAM, Wust P, Bakker JF, et al. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia. 2009;25(7):593–608.
  • Lee HK, Antell AG, Perez CA, et al. Superficial hyperthermia and irradiation for recurrent breast carcinoma of the chest wall: prognostic factors in 196 tumors. Int J Radiat Oncol Biol Phys. 1998;40(2):365–375.
  • Bellizzi GG, Drizdal T, van Rhoon GC, et al. Predictive value of SAR based quality indicators for head and neck hyperthermia treatment quality. Int J Hyperthermia. 2019;36(1):456–465.
  • van Rhoon GC. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? Int J Hyperthermia. 2016;32(1):50–62.
  • Kroesen M, Mulder HT, van Holthe JML, et al. Confirmation of thermal dose as a predictor of local control in cervical carcinoma patients treated with state-of-the-art radiation therapy and hyperthermia. Radiother Oncol. 2019;140:150–158.