1,554
Views
3
CrossRef citations to date
0
Altmetric
Articles

Heating of metallic biliary stents during magnetic hyperthermia of patients with pancreatic ductal adenocarcinoma: an in silico study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1222-1232 | Received 31 May 2022, Accepted 02 Sep 2022, Published online: 14 Sep 2022

References

  • Maier-Hauff K, Rothe R, Scholz R, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53–60.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324.
  • Moss AC, Morris E, Mathuna M. Palliative biliary stents for obstructing pancreatic carcinoma. Cochrane Database Syst Rev. 2006;(2):CD004200.
  • Dumonceau JM, Heresbach D, Deviere J, European Society of Gastrointestinal Endoscopy, et al. Biliary stents: models and methods for endoscopic stenting. Endoscopy. 2011;43(7):617–626.
  • Tsiapla A-R, Kalimeri A-A, Maniotis N, et al. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. Int J Hyperthermia. 2021;38(1):511–522.
  • Tansi FL, Maduabuchi WO, Hirsch M, et al. Deep-tissue localization of magnetic field hyperthermia using pulse sequencing. Int J Hyperthermia. 2021;38(1):743–754.
  • Johannsen M, Gneveckow U, Taymoorian K, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia. 2007;23(3):315–323.
  • Rubia-Rodriguez I, Zilberti L, Arduino A, et al. In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments. Int J Hyperthermia. 2021;38(1):846–861.
  • Adibzadeh F, Paulides MM, van Rhoon GC. SAR thresholds for electromagnetic exposure using functional thermal dose limits. Int J Hyperthermia. 2018;34(8):1248–1254.
  • Ahlbom A, Bergqvist U, Bernhardt JH, et al. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74(4):494–521.
  • Strazzabosco M, Fabris L. Functional anatomy of normal bile ducts. Anat Rec (Hoboken). 2008;291(6):653–660.
  • Boulay BR, Parepally M. Managing malignant biliary obstruction in pancreas cancer: choosing the appropriate strategy. World J Gastroenterol. 2014;20(28):9345–9353.
  • Brelje TC, Sorenson RL. Common Bile Duct 2021. [Available from: https://www.histologyguide.com/slideview/MHS-261-common-bile-duct/15-slide-1.html
  • Christ A, Kainz W, Hahn EG, et al. The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol. 2010;55(2):N23–N38.
  • Gosselin M-C, Neufeld E, Moser H, et al. Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0. Phys Med Biol. 2014;59(18):5287–5303.
  • Blender 2.79 2017. Available from: https://www.blender.org/
  • Girard E, Chagnon G, Gremen E, et al. Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes. J Mech Behav Biomed Mater. 2019;98:291–300.
  • Testoni PA, Mariani A, Mangiavillano B, et al. Main pancreatic duct, common bile duct and sphincter of Oddi structure visualized by optical coherence tomography: an ex vivo study compared with histology. Dig Liver Dis. 2006;38(6):409–414.
  • Mahmud MS, May GR, Kamal MM, et al. Imaging pancreatobiliary ductal system with optical coherence tomography: a review. World J Gastrointest Endosc. 2013;5(11):540–550.
  • Bonsignore C. Open stent design. NDC. 2011;47533:20–47.
  • Foundation II. Tissue Properties Database V4. 0. 2018.
  • Ren F, Li Q, Gao X, et al. Electrical and thermal analyses of catheter-based irreversible electroporation of digestive tract. Int J Hyperthermia. 2019;36(1):853–866.
  • Available from: https://matthey.com/en/products-and-markets/other-markets/medical-components/resource-library/nitinol-technical-properties
  • Available from: http://www.matweb.com/search/DataSheet.aspx?MatGUID=9bd90091755740648e2afa5cdb9fb09b&ckck=1
  • Laakso I, Hirata A, editors. Improving the computational speed and reducing the staircasing error for simulations of human exposure to low frequency magnetic fields. In International symposium on electromagnetic Compatibility – EMC Europe, 17–21 Sept. 2012.
  • Barz C, Petters M, Dorsz A, et al. Possible interactions between stent and electromagnetic field. Sci Tech Innov. 2018;3(2):48–51.
  • Bottauscio O, Arduino A, Chiampi M, et al. Efficient modelling of implanted medical devices with metallic filamentary loops exposed to low or medium frequency magnetic fields. Computer Methods and Programs in Biomedicine. 2022. Available at SSRN: https://ssrn.com/abstract=4149703.
  • Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3(3):1035–1078.
  • Boyer JL, Soroka CJ. Bile formation and secretion: an update. J Hepatol. 2021;75(1):190–201.
  • Johannsen M, Gneveckow U, Thiesen B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol. 2007;52(6):1653–1661.
  • Clinical Trial: "Clinical feasibility study of the intratumoral injection of magnetic nanoparticles associated with the treatment of hyperthermia in locally advanced pancreatic cancer for magnetic hyperthermia of locally advanced pancreatic adenocarcinomas", Spanish Agency of Medicines and Medical Devices (AEMPS). 2022. 797/20/EC.
  • Kozarek R, Baron T, Song H-Y. Self-expandable stents in the gastrointestinal tract. New York (NY): Springer Science & Business Media; 2012.
  • Diller KR, Hayes LJ, Blake GK. Analysis of alternate models for simulating thermal burns. J Burn Care Rehabil. 1991;12(2):177–189.
  • Diller KR. Modeling of bioheat transfer processes at high and low temperatures. In: Cho YI, editor. Advances in heat transfer, vol. 22. New York (NY): Elsevier; 1992. p. 157–357.
  • Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One. 2014;9(8):e103083.
  • Zmuc J, Gasljevic G, Sersa G, et al. Large liver blood vessels and bile ducts are not damaged by electrochemotherapy with bleomycin in pigs. Sci Rep. 2019;9(1):3649.
  • Dollinger M, Zeman F, Niessen C, et al. Bile duct injury after irreversible electroporation of hepatic malignancies: evaluation of MR imaging findings and laboratory values. J Vasc Interv Radiol. 2016;27(1):96–103.
  • Narayanan G, Bhatia S, Echenique A, et al. Vessel patency post irreversible electroporation. Cardiovasc Interv Radiol. 2014;37(6):1523–1529.
  • McDannold N, Vykhodtseva N, Jolesz FA, et al. MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med. 2004;51(5):913–923.
  • Hall JE, Hall ME. Guyton and hall textbook of medical physiology. New York (NY): Elsevier Health Sciences; 2020.
  • Ko CW, Lee SP. Epidemiology and natural history of common bile duct stones and prediction of disease. Gastrointest Endosc. 2002;56(6):S165–S169.
  • Song G, Zhao HQ, Liu Q, et al. A review on biodegradable biliary stents: materials and future trends. Bioact Mater. 2022;17:488–495.