1,167
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Ethylcellulose-stabilized fat-tissue phantom for quality assurance in clinical hyperthermia

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2207797 | Received 29 Nov 2022, Accepted 21 Apr 2023, Published online: 17 May 2023

References

  • Trefná HD, Crezee H, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials:I. Clinical requirements. Int J Hyperthermia. 2017;33(4):471–482.
  • Seegenschmiedt MH, Fessenden P, Vernon CC. Thermoradiotherapy and thermochemotherapy: biology. Physiology, physics. Vol. 1. 1995: Springer.
  • Kato H, Hiraoka M, Ishida T. An agar phantom for hyperthermia. Med Phys. 1986;13(3):396–398.
  • Kato H, Ishida T. Development of an agar phantom adaptable for simulation of various tissues in the range 5-40 mhz.(hyperthermia treatment of cancer). Phys Med Biol. 1987;32(2):221–226.
  • Ito K, Furuya K, Okano Y, et al. Development and characteristics of a biological tissue‐equivalent phantom for microwaves. Electron Comm Jpn Pt I. 2001;84(4):67–77.
  • Nilsson P, Persson B, Kjellén E, et al. Technique for microwave-induced hyperthermia in superficial human tumours. Acta Radiol Oncol. 1982;21(4):235–239.
  • Kuroda M, Kato H, Hanamoto K, et al. Development of a new hybrid gel phantom using carrageenan and gellan gum for visualizing three-dimensional temperature distribution during hyperthermia and radiofrequency ablation. Int J Oncol. 2005;27(1):175–184.
  • Fontes-Candia C, Lopez-Sanchez P, Ström A, et al. Maximizing the oil content in polysaccharide-based emulsion gels for the development of tissue mimicking phantoms. Carbohydr Polym. 2021;256:117496.
  • Bini MG, Ignesti A, Millanta L, et al. The polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Trans Biomed Eng. 1984;31(3):317–322.
  • Lazebnik M, Madsen EL, Frank GR, et al. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys Med Biol. 2005;50(18):4245–4258.
  • Yuan Y, Wyatt C, Maccarini P, et al. A heterogeneous human tissue mimicking phantom for RF heating and MRI thermal monitoring verification. Phys Med Biol. 2012;57(7):2021–2037.
  • Madsen EL, Zagzebski JA, Frank GR. Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med Biol. 1982;8(3):277–287.
  • Dobšíček Trefná H, Crezee J, Schmidt M, et al. Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices. Strahlenther Onkol. 2017;193(5):351–366.
  • Kato H, Hiraoka M, Nakajima T, et al. Deep-heating characteristics of an RF capacitive heating device. Int J Hyperthermia. 1985;1(1):15–28.
  • Duan Q, Duyn JH, Gudino N, et al. Characterization of a dielectric phantom for high‐field magnetic resonance imaging applications. Med Phys. 2014;41(10):102303.
  • Lagendijk J, Nilsson P. Hyperthermia dough: a fat and bone equivalent phantom to test microwave/radiofrequency hyperthermia heating systems. Phys Med Biol. 1985;30(7):709–712.
  • Tosh SM, Marangoni AG. Determination of the maximum gelation temperature in gelatin gels. Appl Phys Lett. 2004;84(21):4242–4244.
  • Trefná HD, et al. Fat tissue equivalent phantoms for microwave applications by reinforcing gelatin with nanocellulose. Biomedical Physics & Engineering Express. 2021;7(6):065025.
  • Kok H, Crezee J. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia. 2017;33(4):378–386.
  • Allen S, Kantor G, Bassen H, et al. CDRH RF phantom for hyperthermia systems evaluations. Int J Hyperthermia. 1988;4(1):17–23. assurance reports
  • Nikawa Y, Chino M, Kikuchi K. Soft and dry phantom modeling material using silicone rubber with carbon fiber. IEEE Trans Microwave Theory Techn. 1996;44(10):1949–1953.
  • Garrett J, Fear E. Stable and flexible materials to mimic the dielectric properties of human soft tissues. Antennas Wirel Propag Lett. 2014;13:599–602.
  • Zetzl AK, Gravelle AJ, Kurylowicz M, et al. Microstructure of ethylcellulose oleogels and its relationship to mechanical properties. Food Structure. 2014;2(1-2):27–40.
  • Fu H, Lo YM, Yan M, et al. Characterization of thermo-oxidative behavior of ethylcellulose oleogels. Food Chem. 2020;305:125470.
  • Aguilar-Zárate M, Macias-Rodriguez BA, Toro-Vazquez JF, et al. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydr Polym. 2019;205:98–105.
  • Martı́nez M, et al. Influence of the concentration of a gelling agent and the type of surfactant on the rheological characteristics of oleogels. Il Farmaco. 2003;58(12):1289–1294.
  • Stauffer PR, Rossetto F, Prakash M, et al. Phantom and animal tissues for modelling the electrical properties of human liver. Int J Hyperthermia. 2003;19(1):89–101.
  • Faraone A, Balzano Q, Simunic D. Experimental dosimetry in a sphere of simulated brain tissue near a half-wave dipole antenna in 1998 IEEE EMC Symposium. International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No 98CH36253). 1998. IEEE.
  • Gravelle AJ, Marangoni AG. Ethylcellulose oleogels: structure, functionality, and food applications. Adv Food Nutr Res. 2018;84:1–56.
  • Wasilewska K, Winnicka K. Ethylcellulose–a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials. 2019;12(20):3386.
  • Vrba J, Vrba D. Temperature and frequency dependent empirical models of dielectric properties of sunflower and olive oil. Radioengineering. 2013;22(4):1281–1287.
  • Pecovska-Gjorgjevich M, Andonovski A, Velevska J. Measuring frequency-and temperature-dependent permittivities of vegetable oils. Physica Macedonica. 2010;59:77–89.
  • Lizhi H, Toyoda K, Ihara I. Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. J Food Eng. 2008;88(2):151–158.
  • Praveen Kumar AV, Goel A, Kumar R, et al. Dielectric characterization of common edible oils in the higher microwave frequencies using cavity perturbation. J Microw Power Electromagn Energy. 2019;53(1):48–56.
  • Meaney PM, Fox CJ, Geimer SD, et al. Electrical characterization of glycerin: water mixtures: implications for use as a coupling medium in microwave tomography. IEEE Trans Microw Theory Tech. 2017;65(5):1471–1478.
  • De Lazzari M, et al. Design and manufacture procedures of phantoms for hyperthermia QA guidelines, in EuCAP 2023. 2023. Florence.
  • Farina L, Sumser K, van Rhoon G, et al. Thermal characterization of phantoms used for quality assurance of deep hyperthermia systems. Sensors. 2020;20(16):4549.
  • Silva NP, Bottiglieri A, Conceição RC, et al. Characterisation of ex vivo liver thermal properties for electromagnetic-based hyperthermic therapies. Sensors. 2020;20(10):3004.
  • TEMPOS user manual. Pullman (WA): METER Group Inc.; 2018.
  • Hasgall PA, Baumgartner DGF, Neufeld C, et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.1; 2022. Available from: itis.swiss/database.
  • Takook P, Persson M, Gellermann J, et al. Compact self-grounded Bow-Tie antenna design for an UWB phased-array hyperthermia applicator. Int J Hyperthermia. 2017;33(4):387–400.
  • CST studio suite 2020. ® - 3D EM simulation and analysis software, Dassault Systemes, France. Available from: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.
  • COMSOL Multiphysics® v. 6.0. Stockholm (Sweden): COMSOL AB; 2022. Available from: www.comsol.com.
  • Trefná HD, Ström A. Hydrogels as a water bolus during hyperthermia treatment. Phys Med Biol. 2019;64(11):115025.
  • Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. 1996. King’s Coll London (United Kingdom Dept of Physics).