2,702
Views
9
CrossRef citations to date
0
Altmetric
Review Article

The histotripsy spectrum: differences and similarities in techniques and instrumentation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2233720 | Received 20 Apr 2023, Accepted 02 Jul 2023, Published online: 17 Jul 2023

References

  • Parsons JE, Cain CA, Abrams GD, et al. Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med Biol. 2006;32(1):115–129. doi: 10.1016/j.ultrasmedbio.2005.09.005.
  • Roberts WW, Hall TL, Ives K, et al. Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol. 2006;175(2):734–738. doi: 10.1016/S0022-5347(05)00141-2.
  • Xu Z, Ludomirsky A, Eun LY, et al. Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(6):726–736. doi: 10.1109/tuffc.2004.1308731.
  • Khokhlova VA, Fowlkes JB, Roberts WW, et al. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int J Hyperthermia. 2015;31(2):145–162. doi: 10.3109/02656736.2015.1007538.
  • Xu Z, Hall TL, Vlaisavljevich E, et al. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia. 2021;38(1):561–575. doi: 10.1080/02656736.2021.1905189.
  • Glickstein B, Levron M, Shitrit S, et al. Nanodroplet-mediated low-energy mechanical ultrasound surgery. Ultrasound Med Biol. 2022;48(7):1229–1239. doi: 10.1016/j.ultrasmedbio.2022.02.018.
  • Khirallah J, Schmieley R, Demirel E, et al. Nanoparticle-mediated histotripsy (NMH) using perfluorohexane nanocones. Phys Med Biol. 2019;64(12):125018. doi: 10.1088/1361-6560/ab207e.
  • Loskutova K, Grishenkov D, Ghorbani M. Review on acoustic droplet vaporization in ultrasound diagnostics and therapeutics. Biomed Res Int. 2019;2019:9480193. doi: 10.1155/2019/9480193.
  • Maxwell AD, Wang T-Y, Cain CA, et al. Cavitation clouds created by shock scattering from bubbles during histotripsy. J Acoust Soc Am. 2011;130(4):1888–1898. doi: 10.1121/1.3625239.
  • Canney MS, Khokhlova TD, Khokhlova VA, Bailey MR, Hwang JH, Crum LA. Tissue erosion using shock wave heating and millisecond boiling in HIFU fields. In: Proceedings of the 9th International Symposium on Therapeutic Ultrasound; 2009 Sep 23–26; Aix-en-Provence, France. American Institute of Physics; 2009. p. 36–39.
  • Khokhlova TD, Canney MS, Khokhlova VA, et al. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling. J Acoust Soc Am. 2011;130(5):3498–3510. doi: 10.1121/1.3626152.
  • Khokhlova TD, Wang Y-N, Simon JC, et al. Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine liver model. Proc Natl Acad Sci U S A. 2014;111(22):8161–8166. doi: 10.1073/pnas.1318355111.
  • Canney MS, Khokhlova VA, Bessonova OV, et al. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound. Ultrasound Med Biol. 2010;36(2):250–267. doi: 10.1016/j.ultrasmedbio.2009.09.010.
  • Pahk KJ, Gélat P, Sinden D, et al. Numerical and experimental study of mechanisms involved in boiling histotripsy. Ultrasound Med Biol. 2017;43(12):2848–2861. doi: 10.1016/j.ultrasmedbio.2017.08.938.
  • Simon JC, Sapozhnikov OA, Khokhlova VA, et al. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Phys Med Biol. 2012;57(23):8061–8078. doi: 10.1088/0031-9155/57/23/8061.
  • Song M, Thomas GPL, Khokhlova VA, et al. Quantitative assessment of boiling histotripsy progression based on color Doppler measurements. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(12):3255–3269. doi: 10.1109/TUFFC.2022.3212266.
  • Khokhlova TD, Haider YA, Maxwell AD, et al. Dependence of boiling histotripsy treatment efficiency on HIFU frequency and focal pressure levels. Ultrasound Med Biol. 2017;43(9):1975–1985. doi: 10.1016/j.ultrasmedbio.2017.04.030.
  • Lin KW, Kim Y, Maxwell AD, et al. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):251–265. doi: 10.1109/TUFFC.2014.6722611.
  • Gerhardson T, Sukovich JR, Pandey AS, et al. Effect of frequency and focal spacing on transcranial histotripsy clot liquefaction, using electronic focal steering. Ultrasound Med Biol. 2017;43(10):2302–2317. doi: 10.1016/j.ultrasmedbio.2017.06.010.
  • Zhang X, Owens GE, Gurm HS, et al. Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy). IEEE Trans Ultrason Ferroelectr Freq Control. 2015;62(7):1342–1355. doi: 10.1109/TUFFC.2015.007016.
  • Maxwell AD, Cain CA, Hall TL, et al. Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med Biol. 2013;39(3):449–465. doi: 10.1016/j.ultrasmedbio.2012.09.004.
  • Church CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol. 2002;28(10):1349–1364. doi: 10.1016/s0301-5629(02)00579-3.
  • Eranki A, Farr N, Partanen A, et al. Mechanical fractionation of tissues using microsecond-long HIFU pulses on a clinical MR-HIFU system. Int J Hyperthermia. 2018;34(8):1213–1224. doi: 10.1080/02656736.2018.1438672.
  • Guan Y, Lu M, Li Y, et al. Histotripsy produced by hundred-microsecond-long focused ultrasonic pulses: a preliminary study. Ultrasound Med Biol. 2016;42(9):2232–2244. doi: 10.1016/j.ultrasmedbio.2016.01.022.
  • Ponomarchuk EM, Rosnitskiy PB, Khokhlova TD, et al. Ultrastructural analysis of volumetric histotripsy bio-effects in large human hematomas. Ultrasound Med Biol. 2021;47(9):2608–2621. doi: 10.1016/j.ultrasmedbio.2021.05.002.
  • Prat F, Chapelon JY, Abou el Fadil F, et al. Focused liver ablation by cavitation in the rabbit: a potential new method of extracorporeal treatment. Gut. 1994;35(3):395–400. doi: 10.1136/gut.35.3.395.
  • Hu Z, Yang XY, Liu Y, et al. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. J Transl Med. 2007;5(1):34. doi: 10.1186/1479-5876-5-34.
  • Kieran K, Hall TL, Parsons JE, et al. Refining histotripsy: defining the parameter space for the creation of nonthermal lesions with high intensity, pulsed focused ultrasound of the in vitro kidney. J Urol. 2007;178(2):672–676. doi: 10.1016/j.juro.2007.03.093.
  • Longo KC, Knott EA, Watson RF, et al. Robotically assisted sonic therapy (RAST) for noninvasive hepatic ablation in a porcine model: mitigation of body wall damage with a modified pulse sequence. Cardiovasc Intervent Radiol. 2019;42(7):1016–1023. doi: 10.1007/s00270-019-02215-8.
  • Eranki A, Farr N, Partanen AV, et al. Boiling histotripsy lesion characterization on a clinical magnetic resonance imaging-guided high intensity focused ultrasound system. PLOS One. 2017;12(3):e0173867. doi: 10.1371/journal.pone.0173867.
  • Wang Y-N, Khokhlova T, Bailey M, et al. Histological and biochemical analysis of mechanical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound. Ultrasound Med Biol. 2013;39(3):424–438. doi: 10.1016/j.ultrasmedbio.2012.10.012.
  • Smallcomb M, Simon JC. High intensity focused ultrasound atomization and erosion in healthy and tendinopathic tendons. Phys. Med. Biol. 2023;68(2):025005. doi: 10.1088/1361-6560/aca9b7.
  • Khokhlova TD, Schade GR, Wang Y-N, et al. Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney. Sci Rep. 2019;9(1):20176. doi: 10.1038/s41598-019-56658-7.
  • Pahk KJ, Mohammad GH, Malago M, et al. A novel approach to ultrasound-mediated tissue decellularization and intra-hepatic cell delivery in rats. Ultrasound Med Biol. 2016;42(8):1958–1967. doi: 10.1016/j.ultrasmedbio.2016.03.020.
  • Vlaisavljevich E, Kim Y, Owens G, et al. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys Med Biol. 2014;59(2):253–270. doi: 10.1088/0031-9155/59/2/253.
  • Vlaisavljevich E, Owens G, Lundt J, et al. Non-invasive liver ablation using histotripsy: preclinical safety study in an in vivo porcine model. Ultrasound Med Biol. 2017;43(6):1237–1251. doi: 10.1016/j.ultrasmedbio.2017.01.016.
  • Wang Y-N, Khokhlova TD, Buravkov S, et al. Mechanical decellularization of tissue volumes using boiling histotripsy. Phys Med Biol. 2018;63(23):235023. doi: 10.1088/1361-6560/aaef16.
  • Fisher JC. The fracture of liquids. J Appl Phys. 1948;19(11):1062–1067. doi: 10.1063/1.1698012.
  • Temperley HNV. The behaviour of water under hydrostatic tension: III. Proc. Phys. Soc. 1947;59(2):199–208. doi: 10.1088/0959-5309/59/2/304.
  • Bader KB, Vlaisavljevich E, Maxwell AD. For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy. Ultrasound Med Biol. 2019;45(5):1056–1080. doi: 10.1016/j.ultrasmedbio.2018.10.035.
  • Herbert E, Balibar S, Caupin F. Cavitation pressure in water. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74(4 Pt 1):041603. doi: 10.1103/PhysRevE.74.041603.
  • Sankin GN, Teslenko VS. Two-threshold cavitation regime. Dokl. Phys. 2003;48(12):665–668. doi: 10.1134/1.1639433.
  • Vlaisavljevich E, Lin K-W, Maxwell A, et al. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation. Ultrasound Med Biol. 2015;41(6):1651–1667. doi: 10.1016/j.ultrasmedbio.2015.01.028.
  • Lu N, Hall TL, Choi D, et al. Transcranial MR-guided histotripsy system. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2917–2929. doi: 10.1109/TUFFC.2021.3068113.
  • Swietlik JF, Knott EA, Longo KC, et al. Histotripsy of subcutaneous fat in a live porcine model. Cardiovasc Intervent Radiol. 2023;46(1):120–127. doi: 10.1007/s00270-022-03262-4.
  • Vlaisavljevich E, Xu Z, Maxwell AD, et al. Effects of temperature on the histotripsy intrinsic threshold for cavitation. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(8):1064–1077. doi: 10.1109/TUFFC.2016.2565612.
  • Lin KW, Duryea AP, Kim Y, et al. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):325–340. doi: 10.1109/TUFFC.2014.6722617.
  • Vlaisavljevich E, Gerhardson T, Hall T, et al. Effects of F-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior. Phys Med Biol. 2017;62(4):1269–1290. doi: 10.1088/1361-6560/aa54c7.
  • Vlaisavljevich E, Lin K-W, Warnez MT, et al. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior. Phys Med Biol. 2015;60(6):2271–2292. doi: 10.1088/0031-9155/60/6/2271.
  • Khokhlova T, Rosnitskiy P, Hunter C, et al. Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion. J Acoust Soc Am. 2018;144(3):1160–1169. doi: 10.1121/1.5052260.
  • Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, et al. Design of HIFU transducers for generating specified nonlinear ultrasound fields. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(2):374–390. doi: 10.1109/TUFFC.2016.2619913.
  • Bawiec CR, Rosnitskiy PB, Peek AT, et al. Inertial cavitation behaviors induced by nonlinear focused ultrasound pulses. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2884–2895. doi: 10.1109/TUFFC.2021.3073347.
  • Wang T-Y, Xu Z, Hall TL, et al. An efficient treatment strategy for histotripsy by removing cavitation memory. Ultrasound Med Biol. 2012;38(5):753–766. doi: 10.1016/j.ultrasmedbio.2012.01.013.
  • Simon A, Edsall C, Vlaisavljevich E. Effects of pulse repetition frequency on bubble cloud characteristics and ablation for single-cycle histotripsy. In: Final program and abstract book of the 183rd meeting of the Acoustical Society of America. Nashville (TN): Acoustical Society of America; 2022. p. 5–9.
  • Shi A, Xu Z, Lundt J, et al. Integrated histotripsy and bubble coalescence transducer for rapid tissue ablation. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(10):1822–1831. doi: 10.1109/TUFFC.2018.2858546.
  • Maxwell A, Sapozhnikov O, Bailey M, et al. Disintegration of tissue using high intensity focused ultrasound: two approaches that utilize shock waves. Acou. Today. 2012;8(4):24. doi: 10.1121/1.4788649.
  • Maxwell AD, Owens G, Gurm HS, et al. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model. J Vasc Interv Radiol. 2011;22(3):369–377. doi: 10.1016/j.jvir.2010.10.007.
  • Vlaisavljevich E, Maxwell A, Warnez M, et al. Histotripsy-induced cavitation cloud initiation thresholds in tissues of different mechanical properties. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(2):341–352. doi: 10.1109/TUFFC.2014.6722618.
  • Kreider W, Maxwell AD, Khokhlova T, et al. Rectified growth of histotripsy bubbles. Proc Meet Acoust. 2013;19(1):075035.
  • Bader KB, Bollen V. The influence of gas diffusion on bubble persistence in shock-scattering histotripsy. J Acoust Soc Am. 2018;143(6):EL481–EL6. doi: 10.1121/1.5043081.
  • Park S, Maxwell AD, Owens GE, et al. Non-invasive embolus trap using histotripsy—an acoustic parameter study. Ultrasound Med Biol. 2013;39(4):611–619. doi: 10.1016/j.ultrasmedbio.2012.11.026.
  • Maxwell AD, Park S, Vaughan BL, et al. Trapping of embolic particles in a vessel phantom by cavitation-enhanced acoustic streaming. Phys Med Biol. 2014;59(17):4927–4943. doi: 10.1088/0031-9155/59/17/4927.
  • Pahk KJ, Lee S, Gélat P, et al. The interaction of shockwaves with a vapour bubble in boiling histotripsy: the shock scattering effect. Ultrason Sonochem. 2021;70:105312. doi: 10.1016/j.ultsonch.2020.105312.
  • Simon JC, Sapozhnikov OA, Wang Y-N, et al. Investigation into the mechanisms of tissue atomization by high-intensity focused ultrasound. Ultrasound Med Biol. 2015;41(5):1372–1385. doi: 10.1016/j.ultrasmedbio.2014.12.022.
  • Khokhlova TD, Monsky WL, Haider YA, et al. Histotripsy liquefaction of large hematomas. Ultrasound Med Biol. 2016;42(7):1491–1498. doi: 10.1016/j.ultrasmedbio.2016.01.020.
  • Ponomarchuk EM, Hunter C, Song M, et al. Mechanical damage thresholds for hematomas near gas-containing bodies in pulsed HIFU fields. Phys. Med. Biol. 2022;67(21):215007. doi: 10.1088/1361-6560/ac96c7.
  • Rosnitskiy PB, Yuldashev PV, Khokhlova VA. Effect of the angular aperture of medical ultrasound transducers on the parameters of nonlinear ultrasound field with shocks at the focus. Acoust. Phys. 2015;61(3):301–307. doi: 10.1134/S1063771015030148.
  • Smallcomb M, Elliott J, Khandare S, et al. Focused ultrasound mechanical disruption of ex vivo rat tendon. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2981–2986. doi: 10.1109/TUFFC.2021.3075375.
  • Li Y, Hall TL, Xu Z, et al. Enhanced shock scattering histotripsy with pseudomonopolar ultrasound pulses. IEEE Trans Ultrason Ferroelectr Freq Control. 2019;66(7):1185–1197. doi: 10.1109/TUFFC.2019.2911289.
  • Pahk KJ. Control of the dynamics of a boiling vapour bubble using pressure-modulated high intensity focused ultrasound without the shock scattering effect: a first proof-of-concept study. Ultrason Sonochem. 2021;77:105699. doi: 10.1016/j.ultsonch.2021.105699.
  • Pahk KJ, Heo J, Joung C, et al. Noninvasive mechanical destruction of liver tissue and tissue decellularisation by pressure-modulated shockwave histotripsy. Front Immunol. 2023;14:1–10. doi: 10.3389/fimmu.2023.1150416.
  • Thomas GPL, Khokhlova TD, Sapozhnikov OA, et al. Enhancement of boiling histotripsy by steering the focus axially during the pulse delivery. IEEE Trans. Ultrason Ferroelect Freq Contr. 2023;(Early access online):1–1. doi: 10.1109/TUFFC.2023.3286759.
  • Landry TG, Gannon J, Vlaisavljevich E, et al. Endoscopic coregistered ultrasound imaging and precision histotripsy: initial in vivo evaluation. BME Front. 2022;2022ID:9794321. doi: 10.34133/2022/9794321.
  • Maxwell AD, Yuldashev PV, Kreider W, et al. A prototype therapy system for transcutaneous application of boiling histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64(10):1542–1557. doi: 10.1109/TUFFC.2017.2739649.
  • Edsall C, Ham E, Holmes H, et al. Effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy. Phys. Med. Biol. 2021;66(22):225009. doi: 10.1088/1361-6560/ac33ed.
  • Bawiec CR, Khokhlova TD, Sapozhnikov OA, et al. A prototype therapy system for boiling histotripsy in abdominal targets based on a 256-element spiral array. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(5):1496–1510. doi: 10.1109/TUFFC.2020.3036580.
  • Ruger L, Yang E, Gannon J, et al. Mechanical high-intensity focused ultrasound (histotripsy) in dogs with spontaneously occurring soft tissue sarcomas. IEEE Trans Biomed Eng. 2023;70(3):768–779. doi: 10.1109/TBME.2022.3201709.
  • Bollen V, Hendley SA, Paul JD, et al. In vitro thrombolytic efficacy of single- and five-cycle histotripsy pulses and rt-PA. Ultrasound Med Biol. 2020;46(2):336–349. doi: 10.1016/j.ultrasmedbio.2019.10.009.
  • Kim Y, Vlaisavljevich E, Owens GE, et al. In vivo transcostal histotripsy therapy without aberration correction. Phys Med Biol. 2014;59(11):2553–2568. doi: 10.1088/0031-9155/59/11/2553.
  • Vlaisavljevich E, Kim Y, Allen S, et al. Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. Ultrasound Med Biol. 2013;39(8):1398–1409. doi: 10.1016/j.ultrasmedbio.2013.02.005.
  • Matula TJ, Wang Y-N, Khokhlova T, et al. Treating porcine abscesses with histotripsy: a pilot study. Ultrasound Med Biol. 2021;47(3):603–619. doi: 10.1016/j.ultrasmedbio.2020.10.011.
  • Maxwell AD, Hsi RS, Bailey MR, et al. Noninvasive ureterocele puncture using pulsed focused ultrasound: an in vitro study. J Endourol. 2014;28(3):342–346. doi: 10.1089/end.2013.0528.
  • Worlikar T, Mendiratta-Lala M, Vlaisavljevich E, et al. Effects of histotripsy on local tumor progression in an in vivo orthotopic rodent liver tumor model. BME Front. 2020;2020:1–14. doi: 10.34133/2020/9830304.
  • Chevillet JR, Khokhlova TD, Giraldez MD, et al. Release of cell-free microrna tumor biomarkers into the blood circulation with pulsed focused ultrasound: a noninvasive, anatomically localized, molecular liquid biopsy. Radiology. 2017;283(1):158–167. doi: 10.1148/radiol.2016160024.
  • Schade GR, Wang Y-N, D'Andrea S, et al. Boiling histotripsy ablation of renal cell carcinoma in the Eker rat promotes a systemic inflammatory response. Ultrasound Med Biol. 2019;45(1):137–147. doi: 10.1016/j.ultrasmedbio.2018.09.006.
  • Khokhlova VA, Rosnitskiy PB, Yuldashev PV, Khokhlova TD, Sapozhnikov OA, Gavrilov LR, et al. Design of a transrectal probe for boiling histotripsy ablation of prostate. Final Program and Abstract Book of the 18th international symposium on therapeutic ultrasound; 2018; Nashville, TN (May 14–17, 2018).
  • Schade GR, Khokhlova TD, Hunter C, Kreider W, Rosnitskiy PB, Yuldashev PV, et al. A preclinical transrectal boiling histotripsy system for prostate ablation. Abstract Book of the 34rd Annual Meeting of Engineering and Urology Society (EUS); 2019; Chicago, IL (May 5, 2019).
  • Schade GR, Khokhlova TD, Hunter C, Kreider W, Rosnitskiy PB, Yuldashev PV, et al. A preclinical transrectal system for boiling histotripsy prostate ablation. Abstract Book of the 19th Internarional Symposium of ISTU; 2019; Barcelona, Spain (June 13–15, 2019).
  • Hall T, Cain C. A low cost compact 512 channel therapeutic ultrasound system for transcutaneous ultrasound surgery. AIP Conference Proceedings. 2006;829(1):445–449.
  • Hoogenboom M, Eikelenboom D, den Brok MH, et al. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology. NMR Biomed. 2016;29(6):721–731. doi: 10.1002/nbm.3520.
  • Karzova MM, Kreider W, Partanen A, et al. Comparative characterization of nonlinear ultrasound fields generated by sonalleve v1 and v2 MR-HIFU systems. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2023;70(6):521–537. Advance online publication. doi: 10.1109/TUFFC.2023.3261420.
  • Hoogenboom M, van Amerongen MJ, Eikelenboom DC, et al. Development of a high-field MR-guided HIFU setup for thermal and mechanical ablation methods in small animals. J Ther Ultrasound. 2015;3(1):14. doi: 10.1186/s40349-015-0035-6.
  • Woodacre JK, Landry TG, Brown JA. Fabrication and characterization of a 5 mm × 5 mm aluminum lens-based histotripsy transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(4):1442–1451. doi: 10.1109/TUFFC.2022.3152174.
  • Woodacre JK, Landry TG, Brown JA. A low-cost miniature histotripsy transducer for precision tissue ablation. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(11):2131–2140. doi: 10.1109/TUFFC.2018.2869689.
  • Mallay MG, Woodacre JK, Landry TG, et al. A dual-frequency lens-focused endoscopic histotripsy transducer. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2906–2916. doi: 10.1109/TUFFC.2021.3078326.
  • Mallay M, Greige J, Landry T, Campbell C, Woodacre J, Ibrahim M, et al. Evaluation of piezoelectric ceramics for use in miniature histotripsy transducers. 2022 IEEE International Ultrasonics Symposium (IUS); 2022 10-13 Oct. 2022. doi: 10.1109/IUS54386.2022.9957153.
  • Uchino K. Ceramic actuators: principles and applications. MRS Bull. 1993;18(4):42–48. doi: 10.1557/S0883769400037349.
  • N-Nagy FL, Joyce GC. Solid state control elements operating on physical principles. In: Mason WP, Thurston RN, editors. Physical acoustics. 9. New York (NY): Academic Press; 1972. p. 131.
  • Knott EA, Swietlik JF, Longo KC, et al. Robotically-assisted sonic therapy for renal ablation in a live porcine model: Initial preclinical results. J Vasc Interv Radiol. 2019;30(8):1293–1302. doi: 10.1016/j.jvir.2019.01.023.
  • Vidal-Jove J, Serres X, Vlaisavljevich E, et al. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. Int J Hyperthermia. 2022;39(1):1115–1123. doi: 10.1080/02656736.2022.2112309.
  • Hendricks-Wenger A, Arnold L, Gannon J, et al. Histotripsy ablation in preclinical animal models of cancer and spontaneous tumors in veterinary patients: a review. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(1):5–26. doi: 10.1109/TUFFC.2021.3110083.
  • Eranki A, Srinivasan P, Ries M, et al. High-intensity focused ultrasound (HIFU) triggers immune sensitization of refractory murine neuroblastoma to checkpoint inhibitor therapy. Clin Cancer Res. 2020;26(5):1152–1161. doi: 10.1158/1078-0432.CCR-19-1604.
  • Qu S, Worlikar T, Felsted AE, et al. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J Immunother Cancer. 2020;8(1):e000200. doi: 10.1136/jitc-2019-000200.
  • Singh MP, Sethuraman SN, Miller C, et al. Boiling histotripsy and in-situ cd40 stimulation improve the checkpoint blockade therapy of poorly immunogenic tumors. Theranostics. 2021;11(2):540–554. doi: 10.7150/thno.49517.
  • van den Bijgaart RJE, Mekers VE, Schuurmans F, et al. Mechanical high-intensity focused ultrasound creates unique tumor debris enhancing dendritic cell-induced T cell activation. Front. Immunol. 2022;13:1–13. doi: 10.3389/fimmu.2022.1038347.
  • Schuster TG, Wei JT, Hendlin K, et al. Histotripsy treatment of benign prostatic enlargement using the Vortx Rx system: Initial human safety and efficacy outcomes. Urology. 2018;114:184–187. doi: 10.1016/j.urology.2017.12.033.
  • Roberts W, Teofilovic W, Jahnke D, et al. Histotripsy of the prostate using a commercial system in a canine model. J Urol. 2014;191(3):860–865. doi: 10.1016/j.juro.2013.08.077.
  • Pichardo S, Gelet A, Curiel L, et al. New integrated imaging high intensity focused ultrasound probe for transrectal prostate cancer treatment. Ultrasound Med Biol. 2008;34(7):1105–1116. doi: 10.1016/j.ultrasmedbio.2007.12.005.
  • Sekar RR, Singh Z, Khokhlova TD, Peek AT, Wang Y-N, Son H, et al. Initial preclinical results of a prototype transrectal histotripsy device for prostate cancer ablation. Final Program and Abstract Book of the 19th International Symposium of ISTU; 2021; Gyeongju, Korea (June 6-9, 2021).
  • Lee JY, Kim K, Hwang SI, et al. Efficacy and safety of transvaginal high-intensity focused ultrasound therapy in women with symptomatic uterine leiomyomas: a clinical trial. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2021;256:302–307. doi: 10.1016/j.ejogrb.2020.11.049.
  • Li T, Khokhlova T, Maloney E, et al. Endoscopic high-intensity focused US: technical aspects and studies in an in vivo porcine model (with video). Gastrointest Endosc. 2015;81(5):1243–1250. doi: 10.1016/j.gie.2014.12.019.
  • Pioche M, Lafon C, Constanciel E, et al. High-intensity focused ultrasound liver destruction through the gastric wall under endoscopic ultrasound control: first experience in living pigs. Endoscopy. 2012;44(S 02):E376–E377. E7. doi: 10.1055/s-0032-1310061.
  • Canney MS, Chavrier F, Tsysar S, et al. A multi-element interstitial ultrasound applicator for the thermal therapy of brain tumors. J Acoust Soc Am. 2013;134(2):1647–1655. doi: 10.1121/1.4812883.
  • Nanda Kumar Y, Singh Z, Wang Y-N, et al. Development of tough hydrogel phantoms to mimic fibrous tissue for focused ultrasound therapies. Ultrasound Med Biol. 2022;48(9):1762–1777. doi: 10.1016/j.ultrasmedbio.2022.05.002.
  • Khokhlova VA, Rosnitskiy PB, Tsysar SA, et al. Initial assessment of boiling histotripsy for mechanical ablation of ex vivo human prostate tissue. Ultrasound Med Biol. 2023;49(1):62–71. doi: 10.1016/j.ultrasmedbio.2022.07.014.
  • Simon A, Robinson F, Anzivino A, et al. Histotripsy for the treatment of uterine leiomyomas: a feasibility study in ex vivo uterine fibroids. Ultrasound Med Biol. 2022;48(8):1652–1662. doi: 10.1016/j.ultrasmedbio.2022.04.214.
  • Zhang X, Owens GE, Cain CA, et al. Histotripsy thrombolysis on retracted clots. Ultrasound Med Biol. 2016;42(8):1903–1918. doi: 10.1016/j.ultrasmedbio.2016.03.027.
  • Bader KB, Haworth KJ, Shekhar H, et al. Efficacy of histotripsy combined with rt-PA in vitro. Phys Med Biol. 2016;61(14):5253–5274. doi: 10.1088/0031-9155/61/14/5253.
  • Hendley SA, Paul JD, Maxwell AD, et al. Clot degradation under the action of histotripsy bubble activity and a lytic drug. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2942–2952. doi: 10.1109/TUFFC.2021.3052393.
  • Prada F, Kalani MYS, Yagmurlu K, et al. Applications of focused ultrasound in cerebrovascular diseases and brain tumors. Neurotherapeutics. 2019;16(1):67–87. doi: 10.1007/s13311-018-00683-3.
  • Gerhardson T, Sukovich JR, Chaudhary N, et al. Histotripsy clot liquefaction in a porcine intracerebral hemorrhage model. Neurosurg. 2020;86(3):429–436. doi: 10.1093/neuros/nyz089.
  • Lu N, Gupta D, Daou BJ, et al. Transcranial magnetic resonance-guided histotripsy for brain surgery: pre-clinical investigation. Ultrasound Med Biol. 2022;48(1):98–110. doi: 10.1016/j.ultrasmedbio.2021.09.008.
  • Lu N, Hall TL, Sukovich JR, et al. Two-step aberration correction: application to transcranial histotripsy. Phys. Med. Biol. 2022;67(12):125009. doi: 10.1088/1361-6560/ac72ed.
  • Macoskey JJ, Hall TL, Sukovich JR, et al. Soft-tissue aberration correction for histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(11):2073–2085. doi: 10.1109/TUFFC.2018.2872727.
  • Sukovich JR, Macoskey JJ, Lundt JE, et al. Real-time transcranial histotripsy treatment localization and mapping using acoustic cavitation emission feedback. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(6):1178–1191. doi: 10.1109/TUFFC.2020.2967586.
  • Allen SP, Hall TL, Cain CA, et al. Controlling cavitation-based image contrast in focused ultrasound histotripsy surgery. Magn Reson Med. 2015;73(1):204–213. doi: 10.1002/mrm.25115.
  • Rosnitskiy PB, Yuldashev PV, Sapozhnikov OA, et al. Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction. J Acoust Soc Am. 2019;146(3):1786–1798. doi: 10.1121/1.5126685.
  • Goudot G, Khider L, Del Giudice C, et al. Non-invasive recanalization of deep venous thrombosis by high frequency ultrasound in a swine model with follow-up. J Thromb Haemost. 2020;18(11):2889–2898. doi: 10.1111/jth.15034.
  • Owens GE, Miller RM, Ensing G, et al. Therapeutic ultrasound to noninvasively create intracardiac communications in an intact animal model. Catheter Cardiovasc Interv. 2011;77(4):580–588. doi: 10.1002/ccd.22787.
  • Erriu M, Blus C, Szmukler-Moncler S, et al. Microbial biofilm modulation by ultrasound: current concepts and controversies. Ultrason Sonochem. 2014;21(1):15–22. doi: 10.1016/j.ultsonch.2013.05.011.
  • Bigelow TA, Thomas CL, Wu H, et al. Impact of high-intensity ultrasound on strength of surgical mesh when treating biofilm infections. IEEE Trans Ultrason Ferroelectr Freq Control. 2019;66(1):38–44. doi: 10.1109/TUFFC.2018.2881358.
  • Childers C, Edsall C, Gannon J, et al. Focused ultrasound biofilm ablation: Investigation of histotripsy for the treatment of catheter-associated urinary tract infections (cautis). IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(9):2965–2980. doi: 10.1109/TUFFC.2021.3077704.
  • Brayman AA, MacConaghy BE, Wang Y-N, et al. Inactivation of planktonic escherichia coli by focused 1-MHz ultrasound pulses with shocks: efficacy and kinetics upon volume scale-up. Ultrasound Med Biol. 2018;44(9):1996–2008. doi: 10.1016/j.ultrasmedbio.2018.05.010.
  • Hinkelman LM, Mast TD, Metlay LA, et al. The effect of abdominal wall morphology on ultrasonic pulse distortion. Part i. Measurements. J Acoust Soc Am. 1998;104(6):3635–3649. doi: 10.1121/1.423946.
  • Ritchie R, Collin J, Coussios C, et al. Attenuation and de-focusing during high-intensity focused ultrasound therapy through peri-nephric fat. Ultrasound Med Biol. 2013;39(10):1785–1793. doi: 10.1016/j.ultrasmedbio.2013.04.010.
  • Thomas GPL, Khokhlova TD, Bawiec CR, et al. Phase-aberration correction for HIFU therapy using a multielement array and backscattering of nonlinear pulses. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(4):1040–1050. doi: 10.1109/TUFFC.2020.3030890.
  • Thomas GPL, Khokhlova TD, Sapozhnikov OA, et al. In vivo aberration correction for transcutaneous HIFU therapy using a multielement array. IEEE Trans Ultrason Ferroelectr Freq Control. 2022;69(10):2955–2964. doi: 10.1109/TUFFC.2022.3200309.
  • Yeats E, Gupta D, Xu Z, et al. Effects of phase aberration on transabdominal focusing for a large aperture, low F-number histotripsy transducer. Phys. Med. Biol. 2022;67(15):155004. doi: 10.1088/1361-6560/ac7d90.
  • Yeats E, Lu N, Sukovich JR, et al. Soft tissue aberration correction for histotripsy using acoustic emissions from cavitation cloud nucleation and collapse. Ultrasound Med Biol. 2023;49(5):1182–1193. doi: 10.1016/j.ultrasmedbio.2023.01.004.
  • Pernot M, Montaldo G, Tanter M, et al. ‘Ultrasonic stars’ for time-reversal focusing using induced cavitation bubbles. Appl Phys Lett. 2006;88(3):034102. doi: 10.1063/1.2162700.
  • Elliott J, Simon JC. Histotripsy bubble dynamics in elastic, anisotropic tissue-mimicking phantoms. Ultrasound Med Biol. 2023;49(3):853–865. doi: 10.1016/j.ultrasmedbio.2022.11.012.
  • Wang TY, Hall TL, Xu Z, et al. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(6):1167–1181. doi: 10.1109/tuffc.2012.2307.
  • Miller RM, Zhang X, Maxwell AD, et al. Bubble-induced color Doppler feedback for histotripsy tissue fractionation. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(3):408–419. doi: 10.1109/TUFFC.2016.2525859.
  • Anthony GJ, Bollen V, Hendley S, et al. Assessment of histotripsy-induced liquefaction with diagnostic ultrasound and magnetic resonance imaging in vitro and ex vivo. Phys Med Biol. 2019;64(9):095023. doi: 10.1088/1361-6560/ab143f.
  • Kutlu AZ, Laeseke PF, Zeighami Salimabad M, et al. A multimodal phantom for visualization and assessment of histotripsy treatments on ultrasound and x-ray imaging. Ultrasound Med Biol. 2023;49(6):1401–1407. doi: 10.1016/j.ultrasmedbio.2023.01.019.
  • Wagner MG, Periyasamy S, Kutlu AZ, et al. An X-ray C-arm guided automatic targeting system for histotripsy. IEEE Trans Biomed Eng. 2023;70(2):592–602. doi: 10.1109/TBME.2022.3198600.