66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Passive hyperthermia alters the resting-state functional connectivity of mouse brain

, , , , , & show all
Article: 2376678 | Received 04 Dec 2023, Accepted 01 Jul 2024, Published online: 11 Jul 2024

References

  • Smith DL, Petruzzello SJ, Kramer JM, et al. The effects of different thermal environments on the physiological and psychological responses of firefighters to a training drill. Ergonomics. 1997;40(4):1–11. doi: 10.1080/001401397188125.
  • Hocking C, Silberstein RB, Lau WM, et al. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(4):719–734. doi: 10.1016/s1095-6433(01)00278-1.
  • Grantham J, Cheung SS, Connes P, et al. Current knowledge on playing football in hot environments. Scand J Med Sci Sports. 2010;20 Suppl 3(s3):161–167. doi: 10.1111/j.1600-0838.2010.01216.x.
  • Mohr M, Nybo L, Grantham J, et al. Physiological responses and physical performance during football in the heat. PloS One. 2012;7(6):e39202. doi: 10.1371/journal.pone.0039202.
  • Wolf DC, Desgent S, Sanon NT, et al. Sex differences in the developing brain impact stress-induced epileptogenicity following hyperthermia-induced seizures. Neurobiol Dis. 2021;161:105546. doi: 10.1016/j.nbd.2021.105546.
  • Wexler RK. Evaluation and treatment of heat-related illnesses. Am Fam Physician. 2002;65(11):2307–2314.
  • Charkoudian N. Hypothermia and Hyperthermia. 2012.
  • Dematte & Jane, E. J. A. o. I. M. Near-fatal heat stroke during the 1995 heat wave in Chicago. 1998 129, 173–181.
  • Hancock PA. Sustained attention under thermal stress. Psychol Bull. 1986;99(2):263–281. doi: 10.1037/0033-2909.99.2.263.
  • Hancock PA, Vasmatzidis I. Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperthermia. 2003;19(3):355–372. doi: 10.1080/0265673021000054630.
  • Qian S, Sun G, Jiang Q, et al. Altered topological patterns of large-scale brain functional networks during passive hyperthermia. Brain Cogn. 2013;83(1):121–131. doi: 10.1016/j.bandc.2013.07.013.
  • Gaoua N, Herrera CP, Périard JD, et al. Effect of passive hyperthermia on working memory resources during simple and complex cognitive tasks. Front Psychol. 2017;8:2290. doi: 10.3389/fpsyg.2017.02290.
  • McKiernan KA, D’Angelo BR, Kaufman JN, et al. Interrupting the "stream of consciousness": an fMRI investigation. NeuroImage. 2006;29(4):1185–1191. doi: 10.1016/j.neuroimage.2005.09.030.
  • Han W, Qian S, Jiang Q, et al. Regional and long-range neural synchronization abnormality during passive hyperthermia. Behav Brain Res. 2018;341:9–15. doi: 10.1016/j.bbr.2017.12.011.
  • Erfani M, Ghazi Tabatabaei Z, Sadigh-Eteghad S, et al. Rosa canina L. methanolic extract prevents heat stress-induced memory dysfunction in rats. Exp Physiol. 2019;104(10):1544–1554. doi: 10.1113/ep087535.
  • Raymann RJ, Van Someren EJ. Time-on-task impairment of psychomotor vigilance is affected by mild skin warming and changes with aging and insomnia. Sleep. 2007;30(1):96–103. doi: 10.1093/sleep/30.1.96.
  • Romeijn N, Van Someren EJ. Correlated fluctuations of daytime skin temperature and vigilance. J Biol Rhythms. 2011;26(1):68–77. doi: 10.1177/0748730410391894.
  • Ramautar JR, Romeijn N, Gómez-Herrero G, et al. Coupling of infraslow fluctuations in autonomic and central vigilance markers: skin temperature, EEG β power and ERP P300 latency. Int J Psychophysiol. 2013;89(2):158–164. doi: 10.1016/j.ijpsycho.2013.01.001.
  • Sun G, Lin X, Yi X, et al. Aircraft noise, like heat stress, causes cognitive impairments via similar mechanisms in male mice. Chemosphere. 2021;274:129739. doi: 10.1016/j.chemosphere.2021.129739.
  • Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–9678. doi: 10.1073/pnas.0504136102.
  • Raichle ME. The brain’s dark energy. Sci Am. 2010;302(3):44–49. doi: 10.1038/scientificamerican0310-44.
  • Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res. 2001;125(1-2):141–149. doi: 10.1016/s0166-4328(01)00291-1.
  • Hao Y, Ge H, Sun M, et al. Selecting an appropriate animal model of depression. Int J Mol Sci. 2019;20(19):4827. doi: 10.3390/ijms20194827.
  • Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360(1457):1001–1013. doi: 10.1098/rstb.2005.1634.
  • Hoshi Y, Okabe K, Shibasaki K, et al. Ischemic brain injury leads to brain edema via hyperthermia-induced TRPV4 activation. J Neurosci. 2018;38(25):5700–5709. doi: 10.1523/jneurosci.2888-17.2018.
  • Liu Z, Sun X, Tang J, et al. Intestinal inflammation and tissue injury in response to heat stress and cooling treatment in mice. Mol Med Rep. 2011;4(3):437–443. doi: 10.3892/mmr.2011.461.
  • Feng C, Wang Y, Zha X, et al. Cold-sensitive ventromedial hypothalamic neurons control homeostatic thermogenesis and social interaction-associated hyperthermia. Cell Metab. 2022;34(6):888–901.e885. doi: 10.1016/j.cmet.2022.05.002.
  • Malyutina YV, Makarova YM, Semenets TN, et al. Whole body hyperthermia in mice confers heat shock protein-dependent radioresistance of their bone marrow and thymocytes. J Therm Biol. 2005;30(7):511–517. doi: 10.1016/j.jtherbio.2005.06.003.
  • Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission. J Physiol. 2008;586(19):4751–4762. doi: 10.1113/jphysiol.2008.157420.
  • Blazquez Freches G, Chavarrias C, Shemesh N. BOLD-fMRI in the mouse auditory pathway. NeuroImage. 2018;165:265–277. doi: 10.1016/j.neuroimage.2017.10.027.
  • Bajic D, Craig MM, Borsook D, et al. Probing Intrinsic Resting-State Networks in the Infant Rat Brain. Front Behav Neurosci. 2016;10:192. doi: 10.3389/fnbeh.2016.00192.
  • Bajic D, Craig MM, Mongerson CRL, et al. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis. Front Neurosci. 2017;11:685. doi: 10.3389/fnins.2017.00685.
  • Ma M, Chang X, Wu HJS. Animal models of stress and stress-related neurocircuits: a comprehensive review. Stress Brain. 2021;1:108–127. doi: 10.26599/sab.2021.9060001.
  • Zerbi V, Grandjean J, Rudin M, et al. Mapping the mouse brain with rs-fMRI: an optimized pipeline for functional network identification. NeuroImage. 2015;123:11–21. doi: 10.1016/j.neuroimage.2015.07.090.
  • Nasseef MT, Ma W, Singh JP, et al. Chronic generalized pain disrupts whole brain functional connectivity in mice. Brain Imaging Behav. 2021;15(5):2406–2416. doi: 10.1007/s11682-020-00438-9.
  • Liu K, Sun G, Li B, et al. The impact of passive hyperthermia on human attention networks: an fMRI study. Behav Brain Res. 2013;243:220–230. doi: 10.1016/j.bbr.2013.01.013.
  • Refinetti R, Carlisle HJ. Effects of anterior and posterior hypothalamic temperature changes on thermoregulation in the rat. Physiol Behav. 1986;36(6):1099–1103. doi: 10.1016/0031-9384(86)90486-5.
  • Murakami T, Yoshida T, Matsui T, et al. Wide-field Ca(2+) imaging reveals visually evoked activity in the retrosplenial area. Front Mol Neurosci. 2015;8:20. doi: 10.3389/fnmol.2015.00020.
  • Smith ML, Asada N, Malenka RC. Anterior cingulate inputs to nucleus accumbens control the social transfer of pain and analgesia. Science. 2021;371(6525):153–159. doi: 10.1126/science.abe3040.
  • Sathyanesan A, Zhou J, Scafidi J, et al. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci. 2019;20(5):298–313. doi: 10.1038/s41583-019-0152-2.
  • Low AYT, Goldstein N, Gaunt JR, et al. Reverse-translational identification of a cerebellar satiation network. Nature. 2021;600(7888):269–273. doi: 10.1038/s41586-021-04143-5.
  • Sun G, Li L, Li M, et al. Hyperthermia impaired pre-attentive processing: an auditory MMN study. Neurosci Lett. 2011;502(2):94–98. doi: 10.1016/j.neulet.2011.07.029.
  • Wang M, Deng S, Cao Y, et al. Injectable versatile liquid-solid transformation implants alliance checkpoint blockade for magnetothermal dynamic-immunotherapy. Mater Today Bio. 2022;16:100442. doi: 10.1016/j.mtbio.2022.100442.
  • Liang B, Yu K, Ling Y, et al. An artificially engineered "tumor bio-magnet" for collecting blood-circulating nanoparticles and magnetic hyperthermia. Biomater Sci. 2019;7(5):1815–1824. doi: 10.1039/c8bm01658e.
  • Yu K, Zhou H, Xu Y, et al. Engineering a triple-functional magnetic gel driving mutually-synergistic mild hyperthermia-starvation therapy for osteosarcoma treatment and augmented bone ­regeneration. J Nanobiotechnology. 2023;21(1):201. doi: 10.1186/s12951-023-01955-7.
  • Liang B, Cao Y, Wang X, et al. A “biomimetic bone-magnet” with suitable mechanical properties concurrently performs accurate target collection of nanoparticles for magnetothermally driven osteosarcoma thermo-chemotherapy. Mater Design. 2023;234:112311. doi: 10.1016/j.matdes.2023.112311.
  • Liang B, Zuo D, Yu K, et al. Multifunctional bone cement for synergistic magnetic hyperthermia ablation and chemotherapy of osteosarcoma. Mater Sci Eng C Mater Biol Appl. 2020;108:110460. doi: 10.1016/j.msec.2019.110460.