2,066
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Case study: shipping trend estimation and prediction via multiscale variance stabilisation

&
Pages 2672-2684 | Received 04 Feb 2016, Accepted 01 Nov 2016, Published online: 24 Nov 2016

References

  • A.P. Alencar, P.A. Morettin, and C.M.C. Toloi, State space Markov switching models using wavelets, Stud. Nonlinear Dyn. E. 17 (2013), pp. 221–238.
  • S. Barber, G.P. Nason, and B.W. Silverman, Posterior probability intervals for wavelet thresholding, J. R. Stat. Soc. B 64 (2002), pp. 189–205.
  • G.E.P. Box and D.R. Cox, An analysis of transformations (with discussion), J. R. Stat. Soc. B 26 (1964), pp. 211–252.
  • A. Branch and M. Robarts, Branch's Elements of Shipping, 9th ed., Routledge, Abingdon, 2014.
  • P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, Springer, New York, 1991.
  • A. Cardinali and G.P. Nason, Costationarity of locally stationary time series, J. Time Ser. Econom. 2 (2010), Issue 2.
  • A. Cardinali and G.P. Nason, Practical powerful wavelet packet tests for second-order stationarity, Appl. Comput. Harmon. Anal. 41 (2016), (to appear). DOI:doi: 10.1016/j.acha.2016.06.006.
  • C. Chatfield, The Analysis of Time Series: An Introduction, 6th ed. Chapman and Hall/CRC, London, 2003.
  • E.A.K. Cohen and A.T. Walden, A statistical analysis of temporally smoothed wavelet coherence, IEEE Trans. Signal Process 58 (2010), pp. 2964–2973.
  • E.A.K. Cohen and A.T. Walden, Wavelet coherence for certain nonstationary bivariate processes, IEEE Trans. Signal Process 59 (2011), pp. 2522–2531.
  • Cyprus Shipping Chamber, Annual report 2013, Limassol, Cyprus, 2014.
  • R. Dahlhaus, Locally stationary processes, in Handbook of Statistics, T. Subba Rao, S. Subba Rao, and C. Rao, eds., Vol. 30, Elsevier, 2012, pp. 351–413.
  • A.C. Davison and D.V. Hinkley, Bootstrap Methods and their Application, Cambridge University Press, Cambridge, 1997.
  • H. Dette, P. Preuss, and M. Vetter, A measure of stationarity in locally stationary processes with applications to testing, J. Amer. Statist. Assoc. 106 (2011), pp. 1113–1124.
  • J. Dickie, Reeds 21st Century Ship Management, Bloomsbury, London, 2014.
  • Y. Dwivedi and Subba Rao S., A test for second-order stationarity of a time series based on the discrete Fourier transform, J. Time Ser. Anal. 32 (2011), pp. 68–91.
  • I. Eckley, G. Nason, and R.L. Treloar, Locally stationary wavelet fields with application to the modelling and analysis of image texture, J. Roy. Statist. Soc. C 59 (2010), pp. 595–616.
  • M. Fisz, The limiting distribution of a function of two independent random variables and its statistical application, Colloq. Math. 3 (1955), pp. 138–146.
  • P.Z. Fryzlewicz, Wavelet techniques for time series and poisson data, Ph.D. thesis, University of Bristol, UK, 2003.
  • P. Fryzlewicz, Modelling and forecasting financial log-returns as locally stationary wavelet processes, J. Appl. Stat. 32 (2005), pp. 503–528.
  • P. Fryzlewicz, Data-driven wavelet-Fisz methodology for nonparametric function estimation, Electron. J. Stat. 2 (2008), pp. 863–896.
  • P. Fryzlewicz, V. Delouille, and G.P. Nason, GOES-8 X-ray sensor variance stabilization using the multiscale data-driven Haar–Fisz transform., J. Roy. Statist. Soc. C 56 (2007), pp. 99–116.
  • P. Fryzlewicz and G.P. Nason, A Haar–Fisz algorithm for Poisson intensity estimation, J. Comput. Graph. Statist. 13 (2004), pp. 621–638.
  • P. Fryzlewicz and G.P. Nason, Haar–Fisz estimation of evolutionary wavelet spectra, J. R. Stat. Soc. B 68 (2006), pp. 611–634.
  • P. Fryzlewicz and H. Ombao, Consistent classification of nonstationary time series using stochastic wavelet representations, J. Amer. Statist. Assoc. 104 (2009), pp. 299–312.
  • P. Fryzlewicz, S. Van Bellegem, and R. von Sachs, Forecasting non-stationary time series by wavelet process modelling, Ann. Inst. Statist. Math. 55 (2003), pp. 737–764.
  • W. Gardner and G. Zivanovic, Degrees of cyclostationarity and their application to signal detection and estimation, Signal Process. 22 (1991), pp. 287–297.
  • A.J. Gibberd and J.D.B. Nelson, Regularised estimation of 2-d locally stationary wavelet processes, IEEE Statistical Signal Processing Workshop, 2016 (to appear). DOI:doi: 10.1109/SSP.2016.7551838.
  • N.R. Goodman, Statistical tests for stationarity within the framework of harmonizable processes, Technical Report AD619270, Rockedyne, Canoga Park, CA, 1965.
  • V. Guerrero, Time-series analysis supported by power transformations, J. Forecast. 12 (1993), pp. 37–48.
  • H. Hurd and N. Gerr, Graphical methods for determining the presence of periodic correlation in time series, IEEE Trans. Inform. Theory 12 (1991), pp. 337–350.
  • R. Hyndman, A. Koehler, R. Snyder, and S. Grose, A state space framework for automatic forecasting using exponential smoothing methods, Int. J. Forecast. 18 (2002), pp. 439–454.
  • R. Hyndman, G. Athanasopoulos, S. Razbash, D. Schmidt, Z. Zhou, Y. Khan, C. Bergmeir, and E. Wang, Forecast: Forecasting Functions for Time Series and Linear Models, R Package Version 5.4, 2014.
  • L. Jin, S. Wang, and H. Wang, A new non-parametric stationarity test of time series in the time domain, J. R. Stat. Soc. B 77 (2015), pp. 893–922.
  • M.J. Keim and D.B. Percival, Assessing characteristic scales using wavelets, J. Roy. Statist. Soc. C 64 (2015), pp. 377–393.
  • M. Knight and G.P. Nason, A nondecimated lifting transform, Stat. Comput. 19 (2009), pp. 1–16.
  • M. Knight, G.P. Nason, and M.A. Nunes, A wavelet lifting approach to long-memory estimation, Stat. Comput. 26 (2016), (to appear), DOI:10.1007/s11222-016-9698-2.
  • M.I. Knight, M.A. Nunes, and G.P. Nason, Spectral estimation for locally stationary time series with missing observations, Stat. Comput. 22 (2012), pp. 877–895.
  • A. Michis, Do more forecasts always improve averages of model forecasts? Evidence from reports published by HM Treasury, OR Insight 26 (2013), pp. 234–241.
  • A. Michis, A wavelet smoothing method to improve conditional sales forecasting, J. Oper. Res. Soc. 66 (2015), pp. 832–844.
  • A.A. Michis and G.P. Nason, Estimation and prediction of shipping trends with the data-driven Haar-Fisz transform, Central Bank of Cyprus, Working Paper 2015–01, 2015.
  • E. Motakis, G. Nason, and P. Fryzlewicz, DDHFm: Variance Stabilization by Data-Driven Haar–Fisz (for Microarrays), R Package Version 1.1.1, 2013.
  • E.S. Motakis, G.P. Nason, P. Fryzlewicz, and G.A. Rutter, Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach, Bioinformatics 22 (2006), pp. 2547–2553.
  • G.P. Nason, Stationary and non-stationary time series, in Statistics in Volcanology, H. Mader and S. Coles, eds., Geological Society of London, London, 2006, pp. 129–142.
  • G.P. Nason, Wavelet Methods in Statistics with R, Springer, New York, 2008.
  • G.P. Nason, A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series., J. R. Stat. Soc. B 75 (2013), pp. 879–904.
  • G.P. Nason, Multiscale variance stabilization via maximum likelihood, Biometrika 101 (2014), pp. 499–504.
  • G.P. Nason and B.W. Silverman, The discrete wavelet transform in S, J. Comput. Graph. Statist. 3 (1994), pp. 163–191.
  • G.P. Nason and R. von Sachs, Wavelets in time series analysis, Philos. Trans. R. Soc. Lond. A 357 (1999), pp. 2511–2526.
  • G.P. Nason, R. von Sachs, and G. Kroisandt, Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum, J. R. Stat. Soc. B 62 (2000), pp. 271–292.
  • E. Paparoditis, Testing temporal constancy of the spectral structure of a time series, Bernoulli 15 (2009), pp. 1190–1221.
  • E. Paparoditis, Validating stationarity assumptions in time series analysis by rolling local periodograms, J. Amer. Statist. Assoc. 105 (2010), pp. 839–851.
  • D.B. Percival, A wavelet perspective on the Allan variance, IEEE Trans. Ultra. Ferro. Freq. Cont. 63 (2016), pp. 538–554.
  • D.B. Percival and A.T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge, 2000.
  • M.B. Priestley, Spectral Analysis and Time Series, Academic Press, London, 1983.
  • M.B. Priestley and Subba Rao T., A test for non-stationarity of time-series, J. R. Stat. Soc. B 31 (1969), pp. 140–149.
  • R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009, ISBN 3-900051-07-0.
  • M. Stopford, Maritime Economics, Routledge, Abingdon, 2009.
  • S.L. Taylor, I.A. Eckley, and M.A. Nunes, Multivariate locally stationary 2d wavelet processes with application to colour texture analysis, Stat. Comput. 26 (2016), to appear, DOI:10.1007/s11222-016-9675-9.
  • K. Thon, M. Geilhufe, and D.B. Percival, A multiscale wavelet-based test for isotropy of random fields on a regular lattice, IEEE Trans. Image Process. 24 (2015), pp. 694–708.
  • K. Triantafyllopoulos and G.P. Nason, A note on state-space representations of locally stationary wavelet time series, Statist. Probab. Lett. 79 (2008), pp. 50–54.
  • S. Van Bellegem and R. von Sachs, On adaptive estimation for locally stationary wavelet processes and its applications, Int. J. Wavelets, Multiresolut. Inf. Process. 2 (2004), pp. 545–565.
  • S. Van Bellegem and R. von Sachs, Locally adaptive estimation of evolutionary wavelet spectra, Ann. Statist. 36 (2008), pp. 1879–1924.
  • R. von Sachs and B. MacGibbon, Non-parametric curve estimation by wavelet thresholding with locally stationary errors, Scand. J. Statist. 27 (2000), pp. 475–499.
  • R. von Sachs and M.H. Neumann, A wavelet-based test for stationarity, J. Time Ser. Anal. 21 (2000), pp. 597–613.
  • Y. Xie, J. Yu, and B. Ranneby, Forecasting using locally stationary wavelet processes, J. Stat. Comput. Simul. 79 (2009), pp. 1067–1082.
  • B. Zhang, M.J. Fadili, and J.-L. Starck, Wavelets, ridgelets and curvelets for Poisson noise removal, IEEE Trans. Image Process. 17 (2008), pp. 1093–1108.