426
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Spatial hidden Markov models and species distributions

, &
Pages 1595-1615 | Received 13 Oct 2016, Accepted 15 Sep 2017, Published online: 19 Oct 2017

References

  • C. Aing, S. Halls, K. Oken, R. Dobrow, and J. Fieberg, A Bayesian hierarchical occupancy model for track surveys conducted in a series of linear, spatially correlated, sites, J. Appl. Ecol. 48 (2011), pp. 1508–1517. doi: 10.1111/j.1365-2664.2011.02037.x
  • N.H. Augustin, M.A. Mugglestone, and S.T. Buckland, An autologistic model for the spatial distribution of wildlife, J. Appl. Ecol. 33 (1996), pp. 339–347. doi: 10.2307/2404755
  • M.M. Barbieri and J.O. Berger, Optimal predictive model selection, Ann. Stat. 32 (2004), pp. 870–897. doi: 10.1214/009053604000000238
  • C.M. Beale, J.J. Lennon, and A. Gimona, Opening the climate envelope reveals no macroscale associations with climate in European birds, Proc. Natl. Acad. Sci. USA 105 (2008), pp. 14908–14912. doi: 10.1073/pnas.0803506105
  • J.E. Besag, Spatial interaction and the statistical analysis of lattice systems (with discussion), J. R. Stat. Soc. Ser. B 36 (1974), pp. 192–236.
  • J.E. Besag, Statistical analysis of non-lattice data, Statistician. 24 (1975), pp. 179–195. doi: 10.2307/2987782
  • J.E. Besag, J. York, and A. Mollié, Bayesian image restoration with two applications in spatial statistics (with discussion), Ann. Inst. Stat. Math. 43 (1991), pp. 1–20. doi: 10.1007/BF00116466
  • S.T. Buckland and D.A. Elston, Empirical models for the spatial distribution of wildlife, J. Appl. Ecol. 30 (1993), pp. 478–495. doi: 10.2307/2404188
  • C.F. Dormann, Effects of incorporating spatial autocorrelation into the analysis of species distribution data, Global Ecol. Biogeogr. 16 (2007), pp. 129–138. doi: 10.1111/j.1466-8238.2006.00279.x
  • C.F. Dormann, J.M. McPherson, M.B. Araujo, R. Bivand, J. Bolliger, G Carl, R.G. Davies, A. Hirzel, W. Jetz, W.D. Kissling, I. Kuhn, R. Ohlemuller, P.R. Peres-Neto, B. Reineking, B. Schroder, F.M. Schurr, and R. Wilson, Methods to account for spatial autocorrelation in the analysis of species distributional data: A review, Ecography 30 (2007), pp. 609–628. doi: 10.1111/j.2007.0906-7590.05171.x
  • R.G. Everitt, Bayesian parameter estimation for latent Markov random fields and social networks, J. Comput. Graph. Statist. 21 (2012), pp. 940–960. doi: 10.1080/10618600.2012.687493
  • M.G. Falk, C.L. Alston, C.A. McGrory, S. Clifford, E.A. Heron, D. Leonte, M. Moores, C.D. Walsh, A.N. Pettitt, and K.L. Mengersen, Recent Bayesian approaches for spatial analysis of 2-D images with application to environmental modelling, Environ. Ecol. Statist. 22 (2015), pp. 571–600. doi: 10.1007/s10651-015-0311-1
  • O. François, S. Ancelet, and G. Guillot, Bayesian clustering using hidden Markov random fields in spatial population genetics, Genetics 174 (2006), pp. 805–816. doi: 10.1534/genetics.106.059923
  • N. Friel and A.N. Pettitt, Classification using distance nearest neighbours, Statist. Comput. 21 (2011), pp. 431–437. doi: 10.1007/s11222-010-9179-y
  • N. Friel, A.N. Pettitt, R. Reeves, and E. Wit, Bayesian inference in hidden Markov random fields for binary data defined on large lattices, J. Comput. Graph. Stat. 18 (2009), pp. 243–261. doi: 10.1198/jcgs.2009.06148
  • C.L. Gardner, J.P. Lawler, Hoef J.M. Ver, A.J. Magoun, and K.A. Kellie, Coarse-scale distribution surveys and occurrence probability modeling for Wolverine in interior Alaska, J. Wildl. Manage. 74 (2010), pp. 1894–1903. doi: 10.2193/2009-386
  • A. Gelman and X.-L. Meng, Simulating normalizing constants: From importance sampling to bridge sampling to path sampling, Statist. Sci. 13 (1998), pp. 163–185. doi: 10.1214/ss/1028905934
  • P.J. Green and S. Richardson, Hidden Markov models and disease mapping, J. Am. Stat. Assoc. 97 (2002), pp. 1055–1070. doi: 10.1198/016214502388618870
  • M.L. Gumpertz, J.M. Graham, and J.B. Ristaino, Autologistic model of spatial pattern of phytophthora epidemic in bell pepper: Effects of soil variables on disease presence, J. Agric. Biol. Environ. Statist. 2 (1997), pp. 131–156. doi: 10.2307/1400400
  • J.A. Harrison, D.G. Allan, L.G. Underhill, M. Herrmans, A.J. Tree, V. Parker, and C.J. Brown, The Atlas of Southern African Birds, Vols 1 and 2, BirdLife South Africa, Johannesburg, 1997.
  • J. Heikkinen and H. Högmander, Fully Bayesian approach to image restoration with an application in biogeography, Appl. Statist. 43 (1994), pp. 569–582. doi: 10.2307/2986258
  • J.A. Hoeting, M. Leecaster, and D. Bowden, An Improved model for spatially correlated binary responses, J. Agric. Biol. Environ. Statist. 5 (2000), pp. 102–114. doi: 10.2307/1400634
  • D.S. Johnson, P.B. Conn, M.B. Hooten, J.C. Ray, and B.A. Pond, Spatial occupancy models for large data sets, Ecology 94 (2013), pp. 801–808. doi: 10.1890/12-0564.1
  • F. Liang and W.H. Wong, Evolutionary Monte Carlo sampling: Applications to Cp model sampling and change-point problem, Statist. Sinica. 10 (2000), pp. 317–342.
  • A.J. Magoun, J.C. Ray, D.S. Johnson, P. Valkenburk, F.N. Dawson, and J. Bowman, Modeling Wolverine occurrence using aerial surveys of tracks in snow, J Wildl. Manage. 71 (2007), pp. 2221–2229. doi: 10.2193/2006-372
  • R. Matsika, Land-cover change: Threats to the Grassland Biome of South Africa. Master thesis, University of Witwatersrand, Johannesburg, 2007.
  • C.A. McGrory, D.M. Titterington, R. Reeves, and A.N. Pettitt, Variational Bayes for estimating the parameters of a hidden Potts model, Statist. Comput. 19 (2009), pp. 329–340. doi: 10.1007/s11222-008-9095-6
  • J. Møller, A.N. Pettitt, K.K. Berthelsen, and R.W. Reeves, An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants, Biometrika 93 (2006), pp. 451–458. doi: 10.1093/biomet/93.2.451
  • I. Murray, Z. Ghahramani, and D.J.C. MacKay, MCMC for doubly-intractable distributions, in Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, R. Dechter and T. Richardson, eds., AUAI Press, Arlington, 2006, pp. 359–366.
  • R. O'Hara and M.J. Sillanpää, A review of Bayesian variable selection methods: What, how and which, Bayesian Anal. 4 (2009), pp. 85–117. doi: 10.1214/09-BA403
  • J. Propp and D. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Struct. Algo. 9 (1996), pp. 223–252. doi: 10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
  • W. Qian and D.M. Titterington, Estimation of parameters in hidden Markov models, Phil. Trans. R. Soc. London Ser. A 337 (1991), pp. 407–428. doi: 10.1098/rsta.1991.0132
  • R. Reeves and A.N. Pettitt, Efficient recursions for general factorisable models, Biometrika 91 (2004), pp. 751–757. doi: 10.1093/biomet/91.3.751
  • J.A. Royle and W.A. Link, Generalized site occupancy models allowing for false positive and false negative errors, Ecology 87 (2006), pp. 835–841. doi: 10.1890/0012-9658(2006)87[835:GSOMAF]2.0.CO;2
  • T. Rydén and D.M. Titterington, Computational Bayesian analysis of hidden Markov models, J. Comp. Graph. Statist. 7 (1998), pp. 194–211.
  • G.A. Sargeant, M.A. Sovada, C.C. Slivinsky, and D.H. Johnson, Markov Chain Monte Carlo estimation of species distributions: A case Study of the Swift Fox in Western Kansas, J. Wildl. Manage. 69 (2005), pp. 483–497. doi: 10.2193/0022-541X(2005)069[0483:MCMCEO]2.0.CO;2
  • G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), pp. 461–464. doi: 10.1214/aos/1176344136
  • L. Spezia, S. Cooksley, M.J. Brewer, D. Donnelly, and A. Tree, Mapping species distributions in one dimension by non-homogeneoushidden Markov models: The case of freshwater pearl mussels in the River Dee, Environ. Ecol. Statist. 21 (2014), pp. 487–505. doi: 10.1007/s10651-013-0265-0
  • D.C. Stanford and A.E. Raftery, Approximate Bayes factors for image segmentation: The pseudolikelihood information criterion (PLIC), IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002), pp. 1517–1520. doi: 10.1109/TPAMI.2002.1046170
  • A.J. Tyre, B. Tenhumberg, S.A. Field, D. Niejalke, K. Parris, and H.P. Possingham, Improving precision and reducing bias in biological surveys: Estimating false-negative error rates, Ecol. Appl. 13 (2003), pp. 1790–1801. doi: 10.1890/02-5078
  • H. Wu and F.W. Huffer, Modelling the distribution of plant species using the autologistic regression model, Environ. Ecol. Statist. 4 (1997), pp. 31–48. doi: 10.1023/A:1018553807765
  • Y. Zhang, M. Brady, and S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm, IEEE Trans. Med. Imaging 20 (2001), pp. 45–57. doi: 10.1109/42.906424

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.