271
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Stress–strength reliability estimation involving paired observation with ties using bivariate exponentiated half-logistic model

ORCID Icon & ORCID Icon
Pages 1049-1064 | Received 24 Jul 2019, Accepted 31 Oct 2020, Published online: 18 Nov 2020

References

  • A.P. Basu and J.K. Ghosh, Identifiability of distributions under competing risks and complementary risks model, Commun. Stat. Theor. Meth. 9 (1980), pp. 1515–1525.
  • Z.W Birnbaum, On a use of Mann-Whitney statistics, in Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1956, pp. 13–17.
  • Z.W. Birnbaum and B.C. McCarty, A distribution-free upper confidence bounds for PrY<X based on independent samples of X and Y, Ann. Math. Stat. 29 (1958), pp. 558–562.
  • P. Congdon, Bayesian Statistical Modelling, John Wiley and Sons, West Sussex, England, 2001.
  • D.T. Danahy, D.T. Burwell, W.S. Aronow and R. Prakash, Sustained hemodynamic and antianginal effect of high dose oral isosorbide dinitrate, Circulation 55 (1976), pp. 381–387. doi:https://doi.org/10.1161/01.cir.55.2.381.
  • F. Domma and S. Giordano, A stress-strength model with dependent variables to measure household financial fragility, Stat. Meth. Appl. 21 (2012), pp. 375–389.
  • F. Domma and S. Giordano, A copula-based approach to account for dependence in stress-strength models, Stat. Papers 54 (2013), pp. 807–826.
  • A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin, Bayesian Data Analysis, 2nd ed., Chapman Hall, London, UK, 2003.
  • D.D. Hanagal, Testing reliability in a bivariate exponential stress-strength model, J. Indian Stat. Assoc. 33 (1995), pp. 41–45.
  • D.D. Hanagal, Note on estimation of reliability under bivariate Pareto stress-strength model, Stat. Papers 38 (1997), pp. 453–459.
  • D.D. Hanagal, Estimation of system reliability in multicomponent series stress-strength models, J. Indian Stat. Assoc. 41 (2003), pp. 1–7.
  • E.S. Jeevanand, Bayesian estimation of Pr(X2<X1) for a bivariate Pareto distribution, J. R. Stat. Soc. Ser. D Statistician 46 (1997), pp. 93–99.
  • J.K. Jose and M. Drisya, Time-dependent stress-strength reliability models based on phase type distribution, Comput. Stat. (2020). doi:https://doi.org/10.1007/s00180-020-00991-3.
  • J.K. Jose, M. Drisya and M. Manoharan, Estimation of stress-strength reliability using discrete phase type distribution, Commun. Stat. Theor. Meth. (2020). doi:https://doi.org/10.1080/03610926.2020.1749663.
  • J.K. Jose, Xavier Thomas and M. Drisya, Estimation of stress-strength reliability using Kumaraswamy half-logistic distribution, J. Probab. Stat. Sci. 17 (2019), pp. 141–154.
  • F. Kizilaslan and M. Nadar, Estimation of reliability in a multicomponent stress-strength model based on bivariate Kumaraswamy distribution, Stat. Papers 59 (2016), pp. 307–340.
  • S.Lumelskii Y. Kotz and M Pensky, The Stres-Strength Model and Its Generalizations: Theory and Applications, Word Scientific, Singapore, 2003.
  • D. Kundu and R.D. Gupta, Estimation of P(Y<X) for the generalized exponential distribution, Metrika 61 (2005), pp. 291–308.
  • D. Kundu and R.D Gupta, Estimation of P(Y<X) for Weibull distribution, IEEE Trans. Reliab. 55 (2006), pp. 270–280.
  • D. Kundu and M.Z. Raqab, Estimation of R=P(Y<X) for three-parameter Weibull distribution, Stat. Probab. Lett. 79 (2009), pp. 1839–1846.
  • D. Kundu and R.D. Gupta, A class of bivariate models with proportional reversed Hazard marginals, Sankhya B 72 (2010), pp. 236–253.
  • D. Kundu and M.Z. Raqab, Estimation of R=P(Y<X) for three-parameter generalized Rayleigh distribution, J. Stat. Comput. Simul. 85 (2013), pp. 725–739.
  • D. Kundu and A.K. Gupta, Bayes estimation for the Marshall-Olkin bivariate Weibull distribution, Comput. Stat. Data Anal. 57 (2013), pp. 271–281.
  • S.G. Meintanis, Test of fit for Marshall-Olkin distributions with applications, J. Stat. Plan. Inference. 137 (2007), pp. 3954–3963.
  • S. Mondal and D. Kundu, A bivariate inverse Weibull distribution and its application in complementary risks model, J. Appl. Stat. (2019). doi:https://doi.org/10.1080/02664763.2019.1669542.
  • S.P. Mukherjee and L.K. Saran, Estimation of failure probability from a bivariate normal stress-strength distribution, Microelectronics Reliab. 25 (1985), pp. 692–702.
  • A. Pak, N.B. Khoolenjani and A.A. Jafari, Inference on Pr(Y<X) in bivariate Rayleigh model, Commun. Stat. Theor. Meth. 43 (2014), pp. 4881–4892.
  • A. Pak and A.K. Gupta, Bayesian inference on Pr(X>Y) in bivariate Rayleigh model, Commun. Stat. Theor. Meth. 47 (2017), pp. 4095–4105.
  • M.Z. Raqab, M.T. Madi and D. Kundu, Estimation of P(Y<X) for the three-parameter generalized exponential distribution, Commun. Stat. Theor. Meth. 37 (2008), pp. 2854–2864.
  • T. Xavier and J.K. Jose, A study of stress-strength reliability using a generalization of power transformed half-logistic distribution, Commun. Stat. Theor. Meth. (2020). doi:https://doi.org/10.1080/03610926.2020.1716250.
  • T. Xavier and J.K. Jose, Estimation of reliability in a multicomponent stress-strength model based on power transformed half-logistic distribution, Int. J. Reliab. Quality Safety Eng. (2020). doi:https://doi.org/10.1142/S0218539321500091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.