172
Views
1
CrossRef citations to date
0
Altmetric
Articles

Statistical estimation and comparison of group-specific bivariate correlation coefficients in family-type clustered studies

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , , , & show all
Pages 2246-2270 | Received 22 Jan 2020, Accepted 28 Feb 2021, Published online: 18 Mar 2021

References

  • C. Humpel, Identifying and validating biomarkers for Alzheimer's disease. Trends Biotechnol. 29(1) (2011), pp. 26–32.
  • K. Blennow, H. Zetterberg, and A.M. Fagan, Fluid biomarkers in Alzheimer disease. Cold. Spring. Harb. Perspect. Med. 2(9) (2012), pp. a006221.
  • A.M. Fagan, M.A. Mintun, R.H. Mach, S.Y. Lee, C.S. Dence, A.R. Shah, G.N. LaRossa, M.L. Spinner, W.E. Klunk, C.A. Mathis, et al., Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann. Neurol. 59(3) (2006), pp. 512–519.
  • J.H. Kang, M. Korecka, J.B. Toledo, J.Q. Trojanowski, and L.M. Shaw, Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease biomarkers. Clin. Chem. 59(6) (2013), pp. 903–916.
  • L. Saint-Aubert, L. Lemoine, K. Chiotis, A. Leuzy, E. Rodriguez-Vieitez, and A. Nordberg, Tau PET imaging: present and future directions. Mol. Neurodegener. 12(1) (2017), pp. 19.
  • N. Mattsson, P.S. Insel, S. Landau, W. Jagust, M. Donohue, L.M. Shaw, J.Q. Trojanowski, H. Zetterberg, K. Blennow, M. Weiner, et al., Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer's disease. Ann. Clin. Transl. Neurol. 1(8) (2014), pp. 534–543.
  • M. Babic, D. Svob Strac, D. Muck-Seler, N. Pivac, G. Stanic, P.R. Hof, and G. Simic, Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease. Croat. Med. J. 55(4) (2014), pp. 347–365.
  • M.M. Verbeek, and M.G. Olde Rikkert,: cerebrospinal fluid biomarkers in the evaluation of Alzheimer disease. Clin. Chem. 54(10) (2008), pp. 1589–1591.
  • D. Galasko, Cerebrospinal fluid biomarkers in Alzheimer disease: a fractional improvement? Arch. Neurol. 60(9) (2003), pp. 1195–1196.
  • K. Blennow, B. Dubois, A.M. Fagan, P. Lewczuk, M.J. de Leon, and H. Hampel, Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease. Alzheimers. Dement. 11(1) (2015), pp. 58–69.
  • S. Palmqvist, H. Zetterberg, K. Blennow, S. Vestberg, U. Andreasson, D.J. Brooks, R. Owenius, D. Hagerstrom, P. Wollmer, L. Minthon, et al., Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid beta-amyloid 42: a cross-validation study against amyloid positron emission tomography. JAMA. Neurol. 71(10) (2014), pp. 1282–1289.
  • W.J. Jagust, S.M. Landau, L.M. Shaw, J.Q. Trojanowski, R.A. Koeppe, E.M. Reiman, N.L. Foster, R.C. Petersen, M.W. Weiner, J.C. Price, et al., Relationships between biomarkers in aging and dementia. Neurology 73(15) (2009), pp. 1193–1199.
  • J.L. Shaffer, J.R. Petrella, F.C. Sheldon, K.R. Choudhury, V.D. Calhoun, R.E. Coleman, and P.M. Doraiswamy, Alzheimer's disease neuroimaging I: predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 266(2) (2013), pp. 583–591.
  • Y. Pouliot, J. Gao, Q.J. Su, G.G. Liu, and X.B. Ling, DIAN: a novel algorithm for genome ontological classification. Genome Res. 11(10) (2001), pp. 1766–1779.
  • H. Shimada, [The DIAN study]. Brain Nerve 65(10) (2013), pp. 1179–1184.
  • M. Storandt, D.A. Balota, A.J. Aschenbrenner, and J.C. Morris, Clinical and psychological characteristics of the initial cohort of the Dominantly Inherited Alzheimer Network (DIAN). Neuropsychology 28(1) (2014), pp. 19–29.
  • T. Kudo, K. Iqbal, R. Ravid, D.F. Swaab, and I. Grundke-Iqbal, Alzheimer disease: correlation of cerebro-spinal fluid and brain ubiquitin levels. Brain Res. 639(1) (1994), pp. 1–7.
  • T. Skillback, H. Zetterberg, K. Blennow, and N. Mattsson, Cerebrospinal fluid biomarkers for Alzheimer disease and subcortical axonal damage in 5,542 clinical samples. Alzheimers. Res. Ther. 5(5) (2013), pp. 47.
  • J.M. Bland, and D.G. Altman, Calculating correlation coefficients with repeated observations: part 1–correlation within subjects. Br. Med. J. 310 (1995), pp. 446.
  • J.M. Bland, and D.G. Altman, Calculating correlation coefficients with repeated observations: part 2–correlation between subjects. Br. Med. J. 310 (1995), pp. 633.
  • F. Gao, P. Thompson, C. Xiong, and J.P. Miller, Analyzing multivariate longitudinal data using SAS®. In: Thirty-first Annual SAS Users Group International Conference: 2006: SAS; 2006.
  • A. Roy, Estimating correlation coefficient between two variables with repeated observations using mixed effects model. Biom. J. 48(2) (2006), pp. 286–301.
  • T. Nguyen, and J. Jiang, Simple estimation of hidden correlation in repeated measures. Stat. Med. 30(29) (2011), pp. 3403–3415.
  • M. AI-Rawwash, and M. Pourahmadi, Gaussian estimation and joint modeling of dispersions and correlations in longitudinal data. Comput. Methods Programs Biomed. 82(2) (2006), pp. 106–113.
  • M. Purahmadi, Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3) (1999), pp. 677–690.
  • J.C. Liechty, M.W. Liechty, and P. Müller, Bayesian correlation estimation. BIOMETRIKA 91(1) (2004), pp. 1–14.
  • B. Cai, and D.B. Dunson, Bayesian covariance selection in generalized linear mixed models. Biometrics 62(2) (2006), pp. 446–457.
  • S.K. Kinney, and D.B. Dunson, Fixed and random effects selection in linear and logistic models. Biometrics 63(3) (2007), pp. 690–698.
  • J. Luo, G. D'Angela, F. Gao, J. Ding, and C. Xiong, Bivariate correlation coefficients in family-type clustered studies. Biom. J. 57(6) (2015), pp. 1084–1109.
  • G.Y. Zou, Toward using confidence intervals to compare correlations. Psychol. Methods 12(4) (2007), pp. 399–413.
  • J.C. Morris, The clinical Dementia Rating (Cdr) - current version and scoring rules. Neurology 43(11) (1993), pp. 2412–2414.
  • R.J. Bateman, C. Xiong, T.L. Benzinger, A.M. Fagan, A. Goate, N.C. Fox, D.S. Marcus, N.J. Cairns, X. Xie, T.M. Blazey, et al., Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N. Engl. J. Med. 367(9) (2012), pp. 795–804.
  • M. Jamshidian, S. Jalal, and C. Jansen, Missmech: An R package for testing homoscedasticity, multivariate normality, and Missing Completely at random (MCAR). J. Stat. Softw. 56(6) (2014), pp. 1–31.
  • R.J.A. Little, A test of missing Completely at random for multivariate data with missing values. J. Am. Stat. Assoc. 83(404) (1988), pp. 1198–1202.
  • A.M. Fagan, M.A. Mintun, A.R. Shah, P. Aldea, C.M. Roe, R.H. Mach, D. Marcus, and J.C. Morris, Holtzman DM: cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO. Mol. Med. 1(8-9) (2009), pp. 371–380.
  • H. Glosová L, J. Koukolík, F. Bojar, and M. and Škoda, D: assessment of total tau protein, phospho tau and beta amyloid in cerebrospinal fluid of patients with neurodegenerative disorders, an autopsy correlation study. Klin Biochem Metab 14(35) (2006), pp. 14–16.
  • M. Sjogren, P. Davidsson, M. Tullberg, L. Minthon, A. Wallin, C. Wikkelso, A.K. Granerus, H. Vanderstichele, and E. Vanmechelen, Blennow k: both total and phosphorylated tau are increased in Alzheimer's disease. J Neurol Neurosur Ps 70(5) (2001), pp. 624–630.
  • K. Blennow, Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx. 1(2) (2004), pp. 213–225.
  • A.M. Fagan, C. Xiong, M.S. Jasielec, R.J. Bateman, A.M. Goate, T.L. Benzinger, B. Ghetti, R.N. Martins, C.L. Masters, R. Mayeux, et al., Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer's disease. Sci. Transl. Med. 6(226) (2014), pp. 226–230.
  • A. Forsberg, H. Engler, O. Almkvist, G. Blomquist, G. Hagman, A. Wall, A. Ringheim, B. Langstrom, and A. Nordberg, PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging 29(10) (2008), pp. 1456–1465.
  • P.X.K. Song, Multivariate dispersion models generated from Gaussian copula. Scand J Stat 27(2) (2000), pp. 305–320.
  • D. Dvorkin, lcmix:layered and chained mixture models. In: R package. 0.3 edn. R; 2012.
  • R Core Team: R: A language and environment for statistical computing. In. Vienna, Australia: R Foundation for Statistical Computing; 2017.
  • N.M. Bello, J.P. Steibel, and R.J. Tempelman, Hierarchical Bayesian modeling of heterogeneous cluster- and subject-level associations between continuous and binary outcomes in dairy production. Biom. J. 54(2) (2012), pp. 230–248.
  • M. Al-Rawwash, and M. Pourahmadi, Gaussian estimation and joint modeling of dispersions and correlations in longitudinal data. Comput Meth Prog Bio 82(2) (2006), pp. 106–113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.