454
Views
7
CrossRef citations to date
0
Altmetric
Articles

Parametric inference of the process capability index for exponentiated exponential distribution

, ORCID Icon &
Pages 4097-4121 | Received 22 May 2020, Accepted 17 Aug 2021, Published online: 05 Sep 2021

References

  • A. Araveeporn, Comparing parameter estimation of random coefficient autoregressive model by frequentist method, Math. 8 (2020), pp. 62. doi:10.3390/math8010062
  • O.H. Arif, M. Aslam, and C.H. Jun, Acceptance sampling plan for multiple manufacturing lines using EWMA process capability index, J. Adv. Mech. Design, Syst., Manuf. 11 (2017), pp. JAMDSM0004–JAMDSM0004.
  • M. Aslam, A new sampling plan using neutrosophic process loss consideration, Symmetry 10 (2018), pp. 132.
  • M. Aslam and M. Albassam, Inspection plan based on the process capability index using the neutrosophic statistical method, Mathematics 7 (2019), pp. 631. doi:10.3390/math7070631
  • M. Aslam, G.S. Rao, N. Khan, and L. Ahmad, Two-stage sampling plan using process loss index under neutrosophic statistics, Commun. Stat. -Simul. Comput. (2020), pp.1–11. doi:10.1080/03610918.2019.1702212
  • M. Aslam, C.W. Wu, M. Azam, and C.H. Jun, Variable sampling inspection for resubmitted lots based on process capability index Cpk for normally distributed items, Appl. Math. Model. 37 (2013), pp. 667–675.
  • G.J. Babu and C.R. Rao, Goodness-of-fit tests when parameters are estimated, Sankhyā 66 (2004), pp. 63–74.
  • S. Balamurali and M. Aslam, Determination of multiple dependent state repetitive group sampling plan based on the process capability index, Seq. Anal. 38 (2019), pp. 385–399.
  • J.P. Chen and C.G. Ding, A new process capability index for non-normal distributions, Int. J. Quality Reliab. Manag. 18 (2001), pp. 762–770.
  • K.S. Chen and F.A. Pearn, An application of the non-normal process capability indices, Quality Reliab. Eng. Int. 11 (1997), pp. 1–6.
  • R.C.H. Cheng and N.A.K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc.: Ser. B Stat. Methodol. 3 (1983), pp. 394–403.
  • J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Non-linear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
  • S. Dey, S. Ali, and C. Park, Weighted exponential distribution: properties and different methods of estimation, J. Stat. Comput. Simul. 85 (2015), pp. 3641–3661.
  • S. Dey, A. Alzaatreh, C. Zhang, and D. Kumar, A new extension of generalized exponential distribution with application to ozone data, Ozone Sci. Eng. 39 (2017c), pp. 273–285.
  • S. Dey, T. Dey, and D. Kundu, Two-parameter Rayleigh distribution: different methods of estimation, Amer. J. Math. Manag. Sci. 33 (2014), pp. 55–74.
  • S. Dey, M.J. Josmar, and S. Nadarajah, Kumaraswamy distribution: different methods of estimation, Comput. Appl. Math. 37 (2017d), pp. 2094–2111. doi:10.1007/s40314-017-0441-1
  • S. Dey, D. Kumar, P.L. Ramos, and F. Louzada, Exponentiated Chen distribution: properties and estimation, Commun. Stat. Simul. Comput. 46 (2017b), pp. 8118–8139.
  • S. Dey, F.A. Moala, and D. Kumar, Statistical properties and different methods of estimation of Gompertz distribution with application, J. Stat. Manag. Syst. 21 (2018), pp. 839–876.
  • S. Dey and M. Saha, Bootstrap confidence intervals of the difference between two generalized process capability indices for inverse Lindley distribution, Life Cycle Reliab. Saf. Eng. 7 (2018), pp. 89–96.
  • S. Dey and M. Saha, Bootstrap confidence intervals of generalized process capability index Cpyk using different methods of estimation, J. Appl. Stat. 46 (2019), pp. 1843–1869.
  • S. Dey and M. Saha, Bootstrap confidence intervals of process capability index spmk using different methods of estimation, J. Stat. Comput. Simul. 90 (2020), pp. 28–50.
  • S. Dey, M. Saha, S.S. Maiti, and H.C. Jun, Bootstrap confidence intervals of generalized process capability Cpyk for Lindley and power Lindley distributions, Commun. Stat. Simul. Comput. 47 (2018), pp. 249–262.
  • B. Efron and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci. 1 (1983), pp. 54–75.
  • M Ekström, Maximum product of spacings estimation, Wiley StatsRef , (2014). doi:10.1002/9781118445112.stat01584
  • J.J. Flaig, Process capability sensitivity analysis, Qual. Eng. 11 (1999), pp. 587–592.
  • R.D. Gupta and D. Kundu, Generalized exponential distributions, Aust. N. Z. J. Stat. 41 (1999), pp. 173–188.
  • R. Ihaka and R. Gentleman, R: a language for data analysis and graphics, J. Comput. Graph. Stat. 5 (1996), pp. 299–314.
  • J.M. JuranJuran's Quality Control Handbook, 3rd ed., McGraw-Hill, New York, NY, 1974.
  • K. Karplus, R. Karchin, G. Shackelford, and R. Hughey, Calibrating E-values for hidden Markov models using reverse-sequence null models, Bioinformatics 21 (2005), pp. 4107–4115.
  • M. Kashif, M Aslam, G.S. Rao, A.H. Al-Marshadi, and C.H. Jun, Bootstrap confidence intervals of the modified process capability index for Weibull distribution, Arab. J. Sci. Eng. 42 (2017), pp. 4565–4573. doi:10.1007/s13369-017-2562-7
  • V. Leiva, C. Marchant, M. Aslam, and F. Rojas, Capability indices for Birnbaum–Saunders processes applied to electronic and food industries, J. Appl. Stat. 41 (2014), pp. 1881–1902.
  • V. Leiva, C. Marchant, and H. Saulo, Capability index for Birnbaum-Saunders process applied to electronic and food Industries, J. Appl. Stat. 41 (2014), pp. 1881–1902.
  • J. Lieblein and M. Zelen, Statistical investigation of the fatigue life of deep-groove ball bearings, J. Res. Natl. Bur. Stand. (1934) 57 (1956), pp. 273–316.
  • S.S. Maiti, M. Saha, and A.K. Nanda, On generalizing process capability indices, J. Qual. Technol. Quant. Manag. 7 (2010), pp. 279–300.
  • J.C. Pan, Y.F. Huang, and J.T.G. Hwang, Estimation of selected parameters, Comput. Stat. Data Anal. 109 (2017), pp. 45–63.
  • C. Park, S. Dey, L. Ouyang, J-H. Jai-Hyun Byun, and M Leeds, Improved bootstrap confidence intervals for the process capability index Cpk, Commun. Stat. Simul. Comput. 49 (2018), pp. 2583–2603. doi:10.1080/03610918.2018.1520877
  • W.L Pearn, Y.T. Tai, I.F. Hsiao, and Y.P. Ao, Approximately unbiased estimator for non-normal process capability index CNpk, J. Test. Eval. 42 (2014), pp. 1408–1417.
  • W.L. Pearn, Y.T. Tai, and H.T. Wang, Estimation of a modified capability index for non-normal distributions, J. Test. Eval. 44 (2016), pp. 1998–2009.
  • C. Peng, Parametric lower confidence limits of quantile-based process capability indices, J. Quality Technol. Quant. Manag. 7 (2010a), pp. 199–214.
  • C. Peng, Estimating and testing quantile-based process capability indices for processes with skewed distributions, J. Data. Sci. 8 (2010b), pp. 253–268.
  • M. Perakis and E. Xekalaki, A process capability index that is based on the proportion of conformance, J. Stat. Comput. Simul. 72 (2002), pp. 707–718.
  • M.R. Pina-Monarrez, J.F. Ortiz-Yaez, and M.I. Rodrguez-Borbn, Non-normal capability indices for the Weibull and log-normal distributions, Qual. Reliab. Eng. Int. 32 (2016), pp. 1321–1329.
  • L.X. Qian, Z.X. Wang, H.R. Wang, and C.Y. Deng, An improved method for predicting water shortage risk in the case of insufficient data and its application in Tianjin, China, J. Earth Syst. Sci. 129 (2020), pp. 1–10. doi:10.1007/s12040-019-1299-y
  • G.S. Rao, M. Aslam, and R.R.L. Kantam, Bootstrap confidence intervals of CNpk for inverse Rayleigh and log-logistic distributions, J. Stat. Comput. Simul. 86 (2016), pp. 862–873.
  • M. Saha, S. Dey, and S.S. Maiti, Parametric and non-parametric bootstrap confidence intervals of CNpk for exponential power distribution, J. Indust. Prod. Eng. 35 (2018), pp. 160–169.
  • M. Saha, S. Dey, and S.S. Maiti, Bootstrap confidence intervals of CpTk for two parameter logistic exponential distribution with applications, Int. J. Syst. Assur. Eng. Manag. 10 (2019b), pp. 623–631.
  • M. Saha, S. Dey, A.S. Yadav, and S. Kumar, Classical and Bayesian inference of Cpy for generalized Lindley distributed quality characteristic, Qual. Reliab. Eng. Int. 35 (2019a), pp. 2593–2611.
  • M. Saha, S. Kumar, S.S. Maiti, Y.S. Yadav, and S. Dey, Asymptotic and bootstrap confidence intervals for the process capability index Cpy based on Lindley distributed quality characteristic, Amer. J. Math. Manag. Sci.39 (2019c), pp. 75–89. doi:10.1080/01966324.2019.1580644
  • M. Smithson, Correct confidence intervals for various regression effect sizes and parameters: the importance of non-central distributions in computing intervals, Educ. Psychol. Meas. 61 (2001), pp. 605–632.
  • J. Swain, S. Venkatraman, and J. Wilson, Least squares estimation of distribution function in Johnsons translation system, J. Stat. Comput. Simul. 29 (1988), pp. 271–297.
  • S. Weber, T. Ressurreio, and C. Duarte, Yield prediction with a new generalized process capability index applicable to non-normal data, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35 (2016), pp. 931–942.
  • C.W. Wu, M. Aslam, and C.H. Jun, Variables sampling inspection scheme for resubmitted lots based on the process capability index Cpk, Eur. J. Oper. Res. 27 (2012), pp. 56–566.
  • Y. Zhang and W.H. Gui, Statistical inference for the lifetime performance index of products with Pareto distribution on basis of general progressive type II censored sample, Commun. Stat. Theor. Meth. 50 (2021), pp. 3790–3808. doi:10.1080/03610926.2020.1801735
  • W.J. Zimmer, J.B. Keats, and F.K. Wang, The Burr XII distribution in reliability analysis, J. Qual. Technol. 30 (1988), pp. 386–394.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.