259
Views
3
CrossRef citations to date
0
Altmetric
Articles

Multi-resolution super learner for voxel-wise classification of prostate cancer using multi-parametric MRI

, , , &
Pages 805-826 | Received 09 Jul 2020, Accepted 05 Dec 2021, Published online: 17 Dec 2021

References

  • C. Agostinelli and L. Greco, Weighted likelihood in Bayesian inference, in Proceedings of the 46th Scientific Meeting of the Italian Statistical Society, Roma, Italy, 2012.
  • A. Algohary, S. Viswanath, R. Shiradkar, S. Ghose, S. Pahwa, D. Moses, I. Jambor, R. Shnier, M. Böhm, A.M. Haynes, P. Brenner, W. Delprado, J. Thompson, M. Pulbrock, A.S. Purysko, S. Verma, L. Ponsky, P. Stricker, and A. Madabhushi, Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings, J. Magn. Reson. Imaging 48 (2018), pp. 818–828.
  • American Cancer Society, Key statistics for prostate cancer. Available at https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html (2021). Accessed: 2021-02-15.
  • Y. Artan, M.A. Haider, D.L. Langer, T.H. Van der Kwast, A.J. Evans, Y. Yang, M.N. Wernick, J. Trachtenberg, and I.S. Yetik, Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields, IEEE. Trans. Image. Process. 19 (2010), pp. 2444–2455.
  • T.Y. Chan, A.W. Partin, P.C. Walsh, and J.I. Epstein, Prognostic significance of gleason score 3 + 4 versus gleason score 4 + 3 tumor at radical prostatectomy, Urology 56 (2000), pp. 823–827.
  • C. De Vente, P. Vos, M. Hosseinzadeh, J. Pluim, and M. Veta, Deep learning regression for prostate cancer detection and grading in bi-parametric MRI, IEEE Trans. Biomed. Eng. 68 (2020), 374–383.
  • B. Delahunt, R.J. Miller, J.R. Srigley, A.J. Evans, and H. Samaratunga, Gleason grading: Past, present and future, Histopathology 60 (2012), pp. 75–86.
  • L. Dickinson, H.U. Ahmed, C. Allen, J.O. Barentsz, B. Carey, J.J. Futterer, S.W. Heijmink, P.J. Hoskin, A. Kirkham, A.R. Padhani, R. Persad, P. Puech, S. Punwani, A.S. Sohaib, B. Tombal, A. Villers, J. van der Meulen, and M. Emberton, Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: Recommendations from a European consensus meeting, Eur. Urol. 59 (2011), pp. 477–494.
  • J.I. Epstein, An update of the Gleason grading system, J. Urol. 183 (2010), pp. 433–440.
  • J.I. Epstein, W.C. Allsbrook Jr., M.B. Amin, L.L. Egevad, and ISUP Grading Committee, The 2005 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma, Am. J. Surg. Pathol. 29 (2005), pp. 1228–1242.
  • D. Fehr, H. Veeraraghavan, A. Wibmer, T. Gondo, K. Matsumoto, H.A. Vargas, E. Sala, H. Hricak, and J.O. Deasy, Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images, Proc. Natl. Acad. Sci. 112 (2015), pp. E6265–E6273.
  • B. Fei, Computer-aided diagnosis of prostate cancer with MRI, Curr. Opin. Biomed. Eng. 3 (2017), pp. 20–27.
  • K. Garcia-Reyes, N.M. Passoni, M.L. Palmeri, C.R. Kauffman, K.R. Choudhury, T.J. Polascik, and R.T. Gupta, Detection of prostate cancer with multiparametric MRI (mpMRI): Effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis, Abdom. Imaging 40 (2015), pp. 134–142.
  • N. Gholizadeh, J. Simpson, S. Ramadan, J. Denham, P. Lau, S. Siddique, J. Dowling, J. Welsh, S. Chalup, and P.B. Greer, Voxel-based supervised machine learning of peripheral zone prostate cancer using noncontrast multiparametric MRI, J. Appl. Clin. Med. Phys. 21 (2020), pp. 179–191.
  • T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, New York, 2009.
  • J.V. Hegde, R.V. Mulkern, L.P. Panych, F.M. Fennessy, A. Fedorov, S.E. Maier, and C.M. Tempany, Multiparametric MRI of prostate cancer: An update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer, J. Magn. Reson. Imaging 37 (2013),pp. 1035–1054.
  • F. Hu and J.V. Zidek, The weighted likelihood, Canad. J. Statist. 30 (2002), pp. 347–371.
  • C. Jensen, J. Carl, L. Boesen, N.C. Langkilde, and L.R. Østergaard, Assessment of prostate cancer prognostic Gleason grade group using zonal-specific features extracted from biparametric MRI using a KNN classifier, J. Appl. Clin. Med. Phys. 20 (2019), pp. 146–153.
  • J. Jin, L. Zhang, E. Leng, G.J. Metzger, and J.S. Koopmeiners, Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate, Stat. Med. 37 (2018),pp. 3214–3229.
  • J. Jin, L. Zhang, E. Leng, G.J. Metzger, and J.S. Koopmeiners, Bayesian spatial models for voxel-wise prostate cancer classification using multi-parametric MRI data, preprint (2020). Available at arXiv:2007.00816.
  • C. Kalavagunta, X. Zhou, S.C. Schmechel, and G.J. Metzger, Registration of in vivo prostate MRI and pseudo-whole mount histology using local affine transformations guided by internal structures (latis), J. Magn. Reson. Imaging 41 (2015), pp. 1104–1114.
  • F. Khalvati, A. Wong, and M.A. Haider, Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models, BMC. Med. Imaging 15 (2015), p. 27.
  • R. Koenker and K.F. Hallock, Quantile regression, J. Econ. Perspect. 15 (2001), pp. 143–156.
  • G. Lemaître, R. Martí, J. Freixenet, J.C. Vilanova, P.M. Walker, and F. Meriaudeau, Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review, Comput. Biol. Med. 60 (2015), pp. 8–31.
  • G.P. Liney, A.J. Knowles, D.J. Manton, L.W. Turnbull, S.J. Blackband, and A. Horsman, Comparison of conventional single echo and multi-echo sequences with a fast spin-echo sequence for quantitative T2 mapping: Application to the prostate, J. Magn. Reson. Imaging 6 (1996),pp. 603–607.
  • G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman, Computer-aided detection of prostate cancer in MRI, IEEE. Trans. Med. Imaging 33 (2014), pp. 1083–1092.
  • A. Matoso and J.I. Epstein, Defining clinically significant prostate cancer on the basis of pathological findings, Histopathology 74 (2019), pp. 135–145.
  • L. Matulewicz, J.F. Jansen, L. Bokacheva, H.A. Vargas, O. Akin, S.W. Fine, A. Shukla-Dave, J.A. Eastham, H. Hricak, J.A. Koutcher, and K.L. Zakian, Anatomic segmentation improves prostate cancer detection with artificial neural networks analysis of 1H magnetic resonance spectroscopic imaging, J. Magn. Reson. Imaging 40 (2014), pp. 1414–1421.
  • S. Mazzetti, M. De Luca, C. Bracco, A. Vignati, V. Giannini, M. Stasi, F. Russo, E. Armando, S. Agliozzo, and D. Regge, A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI, Med. Imaging 2011 Comput.-Aid. Diag. 7963 (2011), p. 79633Q.
  • S. Mazzetti, V. Giannini, F. Russo, and D. Regge, Computer-aided diagnosis of prostate cancer using multi-parametric MRI: Comparison between PUN and Tofts models, Phys. Med. Biol. 63 (2018), p. 095004.
  • P. Mehta, M. Antonelli, H.U. Ahmed, M. Emberton, S. Punwani, and S. Ourselin, Computer-aided diagnosis of prostate cancer using multiparametric MRI and clinical features: A patient-level classification framework, Med. Image. Anal. 73 (2021), p. 102153.
  • G.J. Metzger, C. Kalavagunta, B. Spilseth, P.J. Bolan, X. Li, D. Hutter, J.W. Nam, A.D. Johnson, J.C. Henriksen, L. Moench, B. Konety, C.A. Warlick, S.C. Schmechel, and J.S. Koopmeiners, Detection of prostate cancer: Quantitative multiparametric MR imaging models developed using registered correlative histopathology, Radiology 279 (2016), pp. 805–816.
  • E.A. Nadaraya, On estimating regression, Theory Probab. Appl. 9 (1964), pp. 141–142.
  • E. Niaf, O. Rouvière, F. Mège-Lechevallier, F. Bratan, and C. Lartizien, Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI, Phys. Med. Biol. 57 (2012), p. 3833.
  • S. Parfait, P.M. Walker, G. Créhange, X. Tizon, and J. Miteran, Classification of prostate magnetic resonance spectra using support vector machine, Biomed. Signal Process. Control 7 (2012),pp. 499–508.
  • Y. Peng, Y. Jiang, T. Antic, M.L. Giger, S. Eggener, and A. Oto, A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer, in Proceedings of the SPIE, Vol. 8670, SPIE, Orlando, FL, 2013, p. 86701H.
  • P. Puech, N. Betrouni, N. Makni, A.S. Dewalle, A. Villers, and L. Lemaitre, Computer-assisted diagnosis of prostate cancer using DCE-MRI data: Design, implementation and preliminary results, Int. J. Comput. Assist. Radiol. Surg. 4 (2009), pp. 1–10.
  • V. Shah, B. Turkbey, H. Mani, Y. Pang, T. Pohida, M.J. Merino, P.A. Pinto, P.L. Choyke, and M. Bernardo, Decision support system for localizing prostate cancer based on multiparametric magnetic resonance imaging, Med. Phys. 39 (2012), pp. 4093–4103.
  • A. Stabile, F. Giganti, A.B. Rosenkrantz, S.S. Taneja, G. Villeirs, I.S. Gill, C. Allen, M. Emberton, C.M. Moore, and V. Kasivisvanathan, Multiparametric MRI for prostate cancer diagnosis: Current status and future directions, Nat. Rev. Urol. 17 (2020), pp. 41–61.
  • A. Tharwat, Linear vs. quadratic discriminant analysis classifier: A tutorial, Int. J. Appl. Patt. Recogn. 3 (2016), pp. 145–180.
  • J. Toivonen, I. Montoya Perez, P. Movahedi, H. Merisaari, M. Pesola, P. Taimen, P.J. Boström, J. Pohjankukka, A. Kiviniemi, T. Pahikkala, H.J. Aronen, and I. Jambor, Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization, PLoS ONE 14 (2019), pp. e0217702.
  • R. Trigui, J. Mitéran, P.M. Walker, L. Sellami, and A.B. Hamida, Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS, Biomed. Signal Process. Control 31 (2017), pp. 189–198.
  • M.J. Van der Laan, E.C. Polley, and A.E. Hubbard, Super learner, Stat. Appl. Genet. Mol. Biol. 6 (2007).
  • S.E. Viswanath, P.V. Chirra, M.C. Yim, N.M. Rofsky, A.S. Purysko, M.A. Rosen, B.N. Bloch, and A. Madabhushi, Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: A multi-site study, BMC. Med. Imaging 19 (2019), pp. 1–12.
  • G.S. Watson, Smooth regression analysis, Sankhyā 26 (1964), pp. 359–372.
  • Y. Zhu, L. Wang, M. Liu, C. Qian, A. Yousuf, A. Oto, and D. Shen, MRI-based prostate cancer detection with high-level representation and hierarchical classification, Med. Phys. 44 (2017),pp. 1028–1039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.