1,968
Views
1
CrossRef citations to date
0
Altmetric
Articles

Multipopulation mortality modelling and forecasting: the weighted multivariate functional principal component approaches

ORCID Icon & ORCID Icon
Pages 3177-3198 | Received 04 Jun 2021, Accepted 12 Jul 2022, Published online: 03 Aug 2022

References

  • P. Besse, PCA stability and choice of dimensionality, Stat. Probab. Lett. 13 (1992), pp. 405–410.
  • H. Booth, J. Maindonald, and L. Smith, Applying Lee-Carter under conditions of variable mortality decline, Popul. Stud. 56 (2002), pp. 325–336.
  • D. Bosq, Linear Processes in Function Spaces: Theory and Applications, Springer, New York, 2000.
  • A.J.G. Cairns, D. Blake, and K. Dowd, Modelling and management of mortality risk: A review, Scand. Actuar. J. 2008 (2008), pp. 79–113.
  • A.J.G. Cairns, D. Blake, K. Dowd, G.D. Coughlan, and M. Khalaf-Allah, Bayesian stochastic mortality modelling for two populations, ASTIN Bull. 41 (2011), pp. 29–59.
  • R.Y. Chen and P. Millossovich, Sex-specific mortality forecasting for UK countries: A coherent approach, Eur. Actuar. J. 8 (2018), pp. 69–95.
  • J.M. Chiou, Dynamical functional prediction and classification, with application to traffic flow prediction, Ann. Appl. Stat. 6 (2012), pp. 1588–1614.
  • J.M. Chiou, Y.F. Yang, and Y.T. Chen, Multivariate functional linear regression and prediction, J. Multi. Anal. 146 (2016), pp. 301–312.
  • I.L. Danesi, S. Haberman, and P. Millossovich, Forecasting mortality in subpopulations using Lee-Carter type models: A comparison, Insur.: Math. Econ. 62 (2015), pp. 151–161.
  • A. Delwarde, M. Denuit, M. Guillén, and A. Vidiella-i-Anguera, Application of the Poisson log-bilinear projection model to the G5 mortality experience, Belgian Actuar. Bull. 6 (2006), pp. 54–68.
  • K. Dowd, A.J.G. Cairns, D. Blake, G.D. Coughlan, and M. Khalaf-Allah, A gravity model of mortality rates for two related populations, North Am. Actuar. J. 15 (2011), pp. 334–356.
  • V. Enchev, T. Kleinow, and A.J.G. Cairns, Multi-population mortality models: fitting, forecasting and comparisons, Scand. Actuar. J. 2017 (2017), pp. 319–342.
  • P. Hall, H.G. Müller, and J.L. Wang, Properties of principal component methods for functional and longitudinal data analysis, Ann. Stat. 34 (2006), pp. 1493–1517.
  • C. Happ and S. Greven, Multivariate functional principal component analysis for data observed on different (dimensional) domains, J. Am. Stat. Assoc. 113 (2018), pp. 649–659.
  • P. Hatzopoulos and S. Haberman, Common mortality modeling and coherent forecasts. an empirical analysis of worldwide mortality data, Insur.: Maths. Econ. 52 (2013), pp. 320–337.
  • Human Mortality Database, University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany), 2020. Available at https://www.mortality.org/.
  • R.J. Hyndman, H. Booth, and F. Yasmeen, Coherent mortality forecasting: the product-ratio method with functional time series models, Demography 50 (2013), pp. 261–283.
  • R.J. Hyndman and H.L. Shang, Forecasting functional time series, J. Korean. Stat. Soc. 38 (2009), pp. 199–211.
  • R.J. Hyndman and M.S. Ullah, Robust forecasting of mortality and fertility rates: A functional data approach, Comput. Stat. Data Anal. 51 (2007), pp. 4942–4956.
  • R.J. Hyndman and Y. Khandakar, Automatic time series for forecasting: the forecast package for R, J. Stat. Softw. 27 (2008), pp. 1–22.
  • S.F. Jarner and E.M. Kryger, Modelling adult mortality in small populations: The SAINT model, ASTIN Bull. 41 (2011), pp. 377–418.
  • B.B. Kalben, Why men die younger: Causes of mortality differences by sex, North Am. Actuar. J. 4 (2000), pp. 83–111.
  • K. Karhunen, Zur spektraltheorie stochastischer prozesse, Annales Academiae Scientiarum Fennicae 37 (1946), pp. 1–37.
  • T.C.M. Lee, Discussion: forecasting functional time series, J. Korean. Stat. Soc. 38 (2009), pp. 217.
  • R.D. Lee and L. Carter, Modeling and forecasting the time series of US mortality, J. Am. Stat. Assoc. 87 (1992), pp. 659–671.
  • R.D. Lee and T. Miller, Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography 38 (2001), pp. 537–549.
  • J. Li, A Poisson common factor model for projecting mortality and life expectancy jointly for females and males, Popul. Stud. 67 (2013), pp. 111–126.
  • J. Li, L. Tickle, and N Parr, A multi-population evaluation of the Poisson common factor model for projecting mortality jointly for both sexes, J. Popul. Res. 33 (2016), pp. 333–360.
  • N. Li and R.D. Lee, Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method, Demography 42 (2005), pp. 575–594.
  • M. Loève, Fonctions aléatoires à décomposition orthogonale exponentielle, La Revue Scientifique 84 (1946), pp. 159–162.
  • J.O. Ramsay and B.W. Silverman, Applied functional data analysis: Methods and case studies, J. Am. Stat. Assoc. 100 (2005), pp. 577–590.
  • J.O. Ramsay and B.W. Silverman, Functional Data Analysis, Springer, New York, 2005.
  • J.O. Ramsay and C.J. Dalzell, Some tools for functional data analysis, J. R. Stat. Soc. Ser. B Statist. Methodol. 53 (1991), pp. 539–561.
  • A. Renshaw and S. Haberman, A cohort-based extension to the Lee-Carter model for mortality reduction factors, Insur.: Math. Econ. 38 (2006), pp. 556–570.
  • H.L. Shang, Mortality and life expectancy forecasting for a group of populations in developed countries: A multilevel functional data method, Ann. Appl. Stat. 10 (2016), pp. 1639–1672.
  • C. Wan and L. Bertschi, Swiss coherent mortality model as a basis for developing longevity de-risking solutions for Swiss pension funds: A practical approach, Insur.: Maths. Econ. 63 (2015), pp. 66–75.
  • R. Wu and B. Wang, Coherent mortality forecasting by the weighted multilevel functional principal component approach, J. Appl. Stat. 46 (2019), pp. 1774–1791.
  • F. Yao, H.G. Müller, and J.L. Wang, Functional data analysis for sparse longitudinal data, J. Am. Stat. Assoc. 100 (2005), pp. 577–590.
  • E. Zivot and J. Wang, Modeling Financial Time Series with S-Plus®, Springer, New York, 2007.