420
Views
1
CrossRef citations to date
0
Altmetric
Articles

Spatio-temporal modeling of traffic accidents incidence on urban road networks based on an explicit network triangulation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3229-3250 | Received 22 Dec 2021, Accepted 09 Jul 2022, Published online: 29 Jul 2022

References

  • A. Abdel-Salam, F. Guo, A. Flintsch, M. Arafeh, and H. Rakha, Linear regression crash prediction models, Efficient Transportation and Pavement Systems, CRC Press, 2008.
  • M. I. Adarabioyo and R. A. Ipinyomi, Comparing zero-inflated poisson, zero-inflated negative binomial and zero-inflated geometric in count data with excess zero, Asian J. Probab. Stat. 4 (2019), pp. 1–10.
  • M. A. Aghajani, R. S. Dezfoulian, A. R. Arjroody, and M. Rezaei, Applying GIS to identify the spatial and temporal patterns of road accidents using spatial statistics (case study: Ilam Province, Iran), Transp. Res. Procedia 25 (2017), pp. 2126–2138.
  • T. Appelhans, F. Detsch, C. Reudenbach, and S. Woellauer, mapview – Interactive viewing of spatial data in R, EGU General Assembly Conference Abstracts, 2016. Article EPSC2016–1832, EPSC2016–1832.
  • I. Ashraf, S. Hur, M. Shafiq, Y. Park, and Y. Guo, Catastrophic factors involved in road accidents: Underlying causes and descriptive analysis (Y. Guo, Ed.), PLoS. ONE. 14 (2019), pp. e0223473.
  • E. Azuike, K. Okafor, and P. Okojie, The causes and prevalence of road traffic accidents amongst commercial long distance drivers in Benin city, Edo state, Nigeria, Nig. Hosp. Pract. 26 (2017), pp. 220–230.
  • H. Bakka, H. Rue, G. Fuglstad, A. Riebler, D. Bolin, J. Illian, E. Krainski, D. Simpson, and F. Lindgren, Spatial modeling with R-INLA: A review, WIREs Comput. Stat. 10 (2018), pp. e1443.
  • A. Bhawkar, Severe traffic accidents in United Kingdom, Tech. rep., National College of Ireland, 2018. Available at https://www.researchgate.net/publication/330676135_SevereTraffic_Accidents_in_United_Kingdom.
  • M. Blangiardo and M. Cameletti, Spatial and Spatio-temporal Bayesian Models with R-INLA, John Wiley & Sons, Ltd, London, 2015.
  • Á. Briz-Redón, F. Martínez-Ruiz, and F. Montes, Identification of differential risk hotspots for collision and vehicle type in a directed linear network, Accid. Anal. Preven. 132 (2019), pp. 105278.
  • M. Cameletti, F. Lindgren, D. Simpson, and H. Rue, Spatio-temporal modeling of particulate matter concentration through the SPDE approach, AStA Adv. Stat. Anal. 97 (2013), pp. 109–131.
  • V. Cantillo, P. Garcés, and L. Márquez, Factors influencing the occurrence of traffic accidents in urban roads: A combined GIS-Empirical Bayesian approach, DYNA 83 (2016), pp. 21–28.
  • M. Castro, R. Paleti, and C. R. Bhat, A latent variable representation of count data models to accommodate spatial and temporal dependence: Application to predicting crash frequency at intersections, Transp. Res. Part B: Methodol. 46 (2012), pp. 253–272.
  • S. Chaudhuri, M. Moradi, and J. Mateu, On the trend detection of time-ordered intensity images of point processes on linear networks, Commun. Stat. – Simul. Comput. (2021), pp. 1–13. doi: 10.1080/03610918.2021.1881116.
  • R.P. Curiel, H.G. Ramírez, and S.R. Bishop, A novel rare event approach to measure the randomness and concentration of road accidents (Y. Deng, Ed.), PLoS. ONE. 13 (2018), pp. e0201890.
  • D. Curran-Everett, Explorations in statistics: The analysis of ratios and normalized data, Adv. Physiol. Educ. 37 (2013), pp. 213–219.
  • E.J. de Fortuny, D. Martens, and F. Provost, Predictive modeling with big data: Is bigger really better?, Big. Data. 1 (2013), pp. 215–226.
  • F. Demasi, G. Loprencipe, and L. Moretti, Road safety analysis of urban roads: Case study of an Italian municipality, Safety 4 (2018), pp. 58.
  • M. Deublein, M. Schubert, B. T. Adey, J. Köhler, and M. H. Faber, Prediction of road accidents: A Bayesian hierarchical approach, Accid. Anal. Preven. 51 (2013), pp. 274–291.
  • C.M. Farmer, Temporal factors in motor vehicle crash deaths, Inj. Prev. 11 (2005), pp. 18–23.
  • U. Galgamuwa, Bayesian spatial modeling to incorporate unmeasured information at road segment levels with the INLA approach: A methodological advancement of estimating crash modification factors, J. Traff. Transp. Eng. (English Edition), 2019.
  • A. Gelman, Bayesian data analysis, 2014. [OCLC: 909477393].
  • Y. Guo, A. Osama, and T. Sayed, A cross-comparison of different techniques for modeling macro-level cyclist crashes, Accid. Anal. Preven. 113 (2018), pp. 38–46.
  • M.-C. Hu, M. Pavlicova, and E.V. Nunes, Zero-Inflated and hurdle models of count data with extra zeros: Examples from an HIV-Risk reduction intervention trial, Am. J. Drug. Alcohol. Abuse. 37 (2011), pp. 367–375.
  • J. Huang, B. P. Malone, B. Minasny, A. B. McBratney, and J. Triantafilis, Evaluating a Bayesian modelling approach (INLA-SPDE) for environmental mapping, Sci. Total Environ. 609 (2017), pp. 621–632.
  • F.J. Jegede, Spatio-temporal analysis of road traffic accidents in Oyo state, Nigeria, Accid. Anal. Prev. 20 (1988), pp. 227–243.
  • P. Juan, J. Mateu, and M. Saez, Pinpointing spatio-temporal interactions in wildfire patterns, Stoch. Environ. Res. Risk. Assess. 26 (2012), pp. 1131–1150.
  • M. Karacasu, B. Ergül, and A.A. Yavuz, Limited. estimating the causes of traffic accidents using logistic regression and discriminant analysis, Int. J. Inj. Contr. Saf. Promot. 21 (2013), pp. 305–313.
  • A. Karaganis, A Spatial Point Process for Estimating the Probability of Occurrence of a Traffic Accident, European Regional Science Association, ERSA conference papers, 2006.
  • D. Khulbe, Modeling Severe Traffic Accidents With Spatial And Temporal Features, ICONIP, 2019.
  • D. Lambert, Zero-Inflated poisson regression, with an application to defects in manufacturing, Technometrics 34 (1992), pp. 1–14.
  • F. Lindgren, H. Rue, and J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 73 (2011), pp. 423–498.
  • C. Liu, Exploring spatio-temporal effects in traffic crash trend analysis, Anal. Meth. Accid. Res. 16 (2017), pp. 104–116.
  • C. Liu, S. Zhang, H. Wu, and Q. Fu, A dynamic spatiotemporal analysis model for traffic incident influence prediction on urban road networks, ISPRS Int. J. Geo-Inform. 6 (2017), pp. 362.
  • B.P.Y. Loo, S. Yao, and J. Wu, Spatial point analysis of road crashes in Shanghai: A GIS-based network kernel density method, 2011 19th International Conference on Geoinformatics, 2011.
  • A. Lopez-Quilez and F. Munoz, Review of spatio-temporal models for disease mapping, Tech. rep., 2009. Available at https://www.uv.es/famarmu/doc/Euroheis2-report.pdf.
  • D. Lord and B. N. Persaud, Accident prediction models with and without trend: Application of the generalized estimating equations procedure, Transp. Res. Rec.: J. Transp. Res. Board 1717 (2000), pp. 102–108.
  • R. Lovelace and R. Ellison, stplanr: A package for transport planning, The R Journal 10 (2018), pp. 7–23.
  • J. Martínez-Minaya, F. Lindgren, A. López-Quílez, D. Simpson, and D. Conesa, The Integrated nested Laplace approximation for fitting models with multivariate response, 2021.
  • S. Martino and H. Rue, Case studies in Bayesian computation using INLA, in Complex Data Modeling and Computationally Intensive Statistical Methods, P. Mantovan, P. Secchi, eds., Springer, Milan, 2010. pp. 99–114.
  • T. G. Martins, D. Simpson, F. Lindgren, and H. Rue, Bayesian computing with INLA: New features, Comput. Stat. Data Anal. 67 (2013), pp. 68–83.
  • S.-P. Miaou, The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions, Accid. Anal. Preven. 26 (1994), pp. 471–482.
  • M. Miler, F. Todić, and M. Sevrović, Extracting accurate location information from a highly inaccurate traffic accident dataset: A methodology based on a string matching technique, Transp. Res. Part C: Emerg. Technol. 68 (2016), pp. 185–193.
  • M. Mohanty and A. Gupta, Factors affecting road crash modeling, J. Transp. Lit. 9 (2015), pp. 15–19.
  • M.M. Moradi, Spatial and spatio-temporal point patterns on linear networks, Doctoral diss., Universitat Jaume I, 2018.
  • M.M. Moradi and J. Mateu, First- and second-order characteristics of spatio-temporal point processes on linear networks, J. Comput. Graph. Stat. 0 (2019), pp. 1–21.
  • P. Moraga, Geospatial Health Data : Modeling and Visualization with R-INLA and Shiny, CRC Press, London, 2020.
  • NCHRP, Quality and Accuracy of Positional Data in Transportation, Transportation Research Board, 2003.
  • J. Oh, S. P. Washington, and D. Nam, Accident prediction model for railway-highway interfaces, Accid. Anal. Preven. 38 (2006), pp. 346–356.
  • M.C.M. Oo and T. Thein, An efficient predictive analytics system for high dimensional big data, J. King Saud University – Comput. Inform. Sci. 34 (2019), pp. 1521–1532.
  • M. Padgham, B. Rudis, R. Lovelace, and M. Salmon, OSM Data, The J. Open Source Softw. 2 (2017), 305.
  • V. Prasannakumar, H. Vijith, R. Charutha, and N. Geetha, Spatio-Temporal clustering of road accidents: GIS based analysis and assessment, Procedia – Soc. Behav. Sci. 21 (2011), pp. 317–325.
  • S.S. Pulugurtha and V.R. Sambhara, Pedestrian crash estimation models for signalized intersections, Accid. Anal. Preven. 43 (2011), pp. 439–446.
  • Risk mapping for the TEN-T in Croatia, Greece, Italy and Spain: Update. EuroRAP 2016. Available at https://eurorap.org/risk-mapping-for-the-ten-t-in-croatia-greeceitaly-and-spain-update/.
  • C.E. Rose, S.W. Martin, K.A. Wannemuehler, and B.D. Plikaytis, On the use of zero-inflated and hurdle models for modeling vaccine adverse event count data, J. Biopharm. Stat. 16 (2006), pp. 463–481.
  • H. Rue and L. Held, Gaussian Markov Random Fields: Theory and Applications (Chapman & Hall/CRC Monographs on Statistics and Applied Probability), Chapman & Hall/CRC, London, 2005.
  • H. Rue, S. Martino, and N. Chopin, Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 71 (2009), pp. 319–392.
  • H. Rue, A. Riebler, S.H. Sørbye, J.B. Illian, D.P. Simpson, and F.K. Lindgren, Bayesian Computing with INLA: A Review, 2016.
  • H. Rue, A. Riebler, S.H. Sørbye, J.B. Illian, D.P. Simpson, and F.K. Lindgren, Bayesian computing with INLA: A review, Annu. Rev. Stat. Appl. 4 (2017), pp. 395–421.
  • M. Salifu, Accident prediction models for unsignalised urban junctions in Ghana, IATSS Res. 28 (2004), pp. 68–81.
  • L. Serra, M. Saez, P. Juan, D. Varga, and J. Mateu, A spatio-temporal Poisson hurdle point process to model wildfires, Stoch. Environ. Res. Risk. Assess. 28 (2013), pp. 1671–1684. doi: 10.1007/s00477-013-0823-x.
  • G. A. Shafabakhsh, A. Famili, and M. S. Bahadori, GIS-based spatial analysis of urban traffic accidents: Case study in Mashhad, Iran, J. Traffic Transp. Eng. (English Edition) 4 (2017), pp. 290–299.
  • S. Shahid, A. Minhans, O. Che Puan, S. A. Hasan, and T. Ismail, Spatial and temporal pattern of road accidents and casualties in peninsular Malaysia, J. Teknol. 76 (2015), pp. 000.
  • D.P. Simpson, H. Rue, A. Riebler, T.G. Martins, and S.H. Sørbye, Penalising model component complexity: A principled, practical approach to constructing priors, preprint (2014), arXiv doi: 10.48550/ARXIV.1403.4630.
  • D. Simpson, H. Rue, A. Riebler, T.G. Martins, and S.H. Sørbye, Penalising model component complexity: A principled, practical approach to constructing priors, Stat. Sci. 32 (2017), pp. 1–28.doi: 10.1214/16-sts576.
  • T.D. Smedt, Comparing MCMC and INLA for disease mapping with Bayesian hierarchical models, Arch. Public Health 73 (2015), doi: 10.1186/2049-3258-73-s1-o2.
  • D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der Linde, Bayesian measures of model complexity and fit, J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 64 (2002), pp. 583–639.
  • B.M. Taylor and P.J. Diggle, INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes, J. Stat. Comput. Simul. 84 (2014), pp. 2266–2284.
  • TFL, Transport for London: Road Safety, 2019. Retrieved April 30, 2019, Available at https://tfl.gov.uk/corporate/publications-and-reports/road-safety.
  • P.J. Verdoy, Enhancing the SPDE modeling of spatial point processes with INLA, applied to wildfires. choosing the best mesh for each database, Commun. Stat. – Simul. Comput. 50 (2021), pp. 2990–3030.
  • C. Wang, M. A. Quddus, and S. G. Ison, Impact of traffic congestion on road accidents: A spatial analysis of the M25 motorway in England, Accid. Anal. Prev. 41 (2009), pp. 798–808.
  • W. Wang, Z. Yuan, Y. Yang, X. Yang, Y. Liu, and Y. Guo, Factors influencing traffic accident frequencies on urban roads: A spatial panel time-fixed effects error model (Y. Guo, Ed.), PLoS. ONE. 14 (2019), pp. e0214539.
  • S. Watanabe, Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory, J. Mach. Learn. Res. 11 (2010), 3571–3594.
  • WHO, Global Status Report on Road Safety 2018, World Health Organization, (2019, Jan 10).
  • C. K. Wikle, L. M. Berliner, and N. Cressie, Hierarchical Bayesian space-time models, Environ. Ecol. Stat. 5 (1998), pp. 117–154.
  • A. M. Williamson and A.-M. Feyer, Causes of accidents and the time of day, Work & Stress 9 (1995), pp. 158–164.
  • P. Xu and H. Huang, Modeling crash spatial heterogeneity: Random parameter versus geographically weighting, Accid. Anal. Prev. 75 (2015), pp. 16–25.
  • F. Zhong-xiang, L. Shi-sheng, Z. Wei-hua, and Z. Nan-nan, Combined prediction model of death toll for road traffic accidents based on independent and dependent variables, Comput. Intell. Neurosci. 2014 (2014), pp. 1–7.
  • A.F. Zuur, Beginners Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA: Using GLM and GLMM (Vol. 1), Highland Statistics Ltd, Scotland, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.