262
Views
0
CrossRef citations to date
0
Altmetric
Articles

A Markov random field model with cumulative logistic functions for spatially dependent ordinal data

ORCID Icon & ORCID Icon
Pages 70-86 | Received 02 Jun 2021, Accepted 17 Aug 2022, Published online: 30 Aug 2022

References

  • A. Agresti, Categorical Data Analysis, John Wiley & Sons, Hoboken, New Jersey, 2002.
  • A. Agresti, Analysis of Ordinal Categorical Data, John Wiley & Sons, Hoboken, New Jersey, 2010.
  • A. Al-Humairi, R.H.L. Ip, K. Spuur, X. Zheng, and B. Huang, Visual grading experiments and optimization in CBCT dental implantology imaging: Preliminary application of integrated visual grading regression, Radiat. Environ. Biophys. 61 (2022), pp. 133–145.
  • J. Besag, Spatial interaction and the statistical analysis of lattice system (with discussion), J. R. Stat. Soc. Ser. B (Stat. Methodol.) 36 (1974), pp. 192–236.
  • J. Besag, Statistical analysis of non-lattice data, J. R. Stat. Soc. Ser. D (The Statistician) 24 (1975), pp. 179–195.
  • F. Bickenbach and E. Bode, Evaluating the Markov property in studies of economic convergence, Int. Reg. Sci. Rev. 26 (2003), pp. 363–392.
  • S. Borovkova, H.P. Lopuhaä, and B.N. Ruchjana, Consistency and asymptotic normality of least estimators in generalized STAR models, Stat. Neerl. 62 (2008), pp. 482–508.
  • A. Braddley and R. Turner, Practical maximum pseudo likelihood for spatial point pattern, Aust. N. Z. J. Stat. 42 (2010), pp. 283–322.
  • M.J. Brewer, D.A. Elston, M.E. Hodgson, A.M. Stolte, A.J. Nolan, and D.J. Henderson, A spatial model with ordinal responses for grazing impact data, Stat. Modell. 4 (2004), pp. 127–143.
  • J. Chilés and P. Delfiner, Geostatistics, Wiley, Hoboken, New Jersey, 2012.
  • R.H.B. Christensen, Ordinal – regression models for ordinal data (2019). Available at http://www.cran.r-project.org/package=ordinal/.
  • A.D. Cliff and J. Ord, Spatial Processes: Models and Applications, Pioneer, London, 1981.
  • N. Cressie, Statistics for Spatial Data, John Wiley & Sons, New York, 1993.
  • N. Cressie and S. Lele, New models for Markov random fields, J. Appl. Probab. 29 (1992), pp. 877–884.
  • J.K. Dow and J.W. Endersby, Multinomial probit and multinomial logit: A comparison of choice models for voting research, Elect. Stud. 23 (2004), pp. 107–122.
  • K. Fokianos and B. Kedem, Regression theory for categorical time series, Statist. Sci. 18 (2013), pp. 357–376.
  • S. Geman and C. Graffigne, Markov random field image models and their applications to computer vision, Proc. Int. Congr. Math. 1 (1986), pp. 1496–1517.
  • Z.R. Ghahroodi, M. Ganjali, and D. Berridge, A transition model for ordinal response data with random dropout: An application to the fluvoxamine data, J. Biopharm. Stat. 19 (2009), pp. 658–671.
  • S. Gómez, L. Gonda-King, C.M. Orians, D.A. Orwig, R. Panko, L. Radville, N. Soltis, C.S. Thornber, and E.L. Preisser, Interactions between invasive herbivores and their long-term impact on New England hemlock forests, Biol. Invasions 17 (2015), pp. 661–673.
  • A. Guisan and F.E. Harrell, Ordinal response regression models in ecology, J. Veg. Sci. 11 (2000), pp. 617–626.
  • M.L. Gumpertz, J.M. Graham, and J.B. Ristaino, Autologistic model of spatial pattern of phytophthora epidemic in bell pepper: Effects of soil variables on disease presence, J. Agric. Biol. Environ. Stat. 2 (1997), pp. 131–156.
  • X. Guyon, Random Fields on a Network: Modeling, Statistics, and Applications, Springer, New York, 1995.
  • M. Hebar, D. Gleich, and Ž. Čučej, Autobinomial model for SAR image despeckling and information extraction, IEEE Trans. Geosci. Remote Sens. 47 (2009), pp. 2818–2835.
  • M.D. Higgs and J.A. Hoeting, A clipped latent variable model for spatially correlated ordered categorical data, Comput. Statist. Data Anal. 54 (2010), pp. 1999–2011.
  • R. Hooke and T.A. Jeeves, ‘Direct search’ solution of numerical and statistical problems, J. ACM 8 (1961), pp. 212–229.
  • F. Huang and Y. Ogata, Generalized pseudo-likelihood estimates for Markov random fields on lattice, Ann. Inst. Statist. Math. 54 (2002), pp. 1–18.
  • R.H.L. Ip and K.Y.K. Wu, A note on discrete multivariate Markov random field models, Statist. Probab. Lett. 156 (2020), pp. 108588.
  • R.H.L. Ip, L. Ang, K.P. Seng, J.C. Broster, and J.E. Pratley, Big data and machine learning for crop protection, Comput. Electron. Agric. 151 (2018), pp. 376–383.
  • R.H.L. Ip, D. Demskoi, A. Rahman, and L. Zheng, Evaluation of COVID-19 mitigation policies in Australia using generalised space–time autoregressive intervention models, Int. J. Environ. Res. Public Health 18 (2021), pp. 7474.
  • M. Kaiser and N. Cressie, Modeling Poisson variables with positive spatial dependence, Statist. Probab. Lett. 35 (1997), pp. 423–432.
  • A. Kavousi, R.M. Meshkani, and M. Mohammadzadeh, Spatial analysis of relative risk of lip cancer in Iran: A Bayesian approach, Environmetrics 20 (2009), pp. 347–359.
  • A. Kavousi, M.R. Meshkani, and M. Mohammadzadeh, Spatial analysis of auto-multivariate lattice data, Statist. Papers 52 (2011), pp. 937–952.
  • L. Knorr-Held and H. Rue, On block updating in Markov random field models for disease mapping, Scand. J. Stat. 29 (2002), pp. 597–614.
  • V. Kutsyy, Modeling and inference for spatial processes with ordinal data, Ph.D. thesis., The University of Michigan, 2001.
  • K. Lee and M.J. Daniels, Marginalized models for longitudinal ordinal data with application to quality of life studies, Stat. Med. 27 (2008), pp. 4359–4380.
  • S. Lele, Jackknifing linear estimating equations: Asymptotic theory and applications in stochastic processes, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 53 (1991), pp. 253–267.
  • S.Z. Li, Markov Random Field Modeling in Image Analysis, Springer-Verlag, London, 2009.
  • Y. Li, C. Li, X. Li, K. Wang, M.M. Rahaman, C. Sun, H. Chen, X. Wu, H. Zhang, and Q. Wang, A comprehensive review of Markov random field and conditional random field approaches in pathology image analysis, Arch. Comput. Methods Eng. 29 (2021), pp. 609–639.
  • I. Liu and A. Agresti, The analysis of ordered categorical data: An overview and a survey of recent development, Test 14 (2005), pp. 1–73.
  • R. Liu and H. Zhu, Statistical disease mapping for heterogeneous neuroimaging studies, Canad. J. Statist. 49 (2021), pp. 10–34.
  • P. McCullagh, Regression models for ordinal data, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 42 (1980), pp. 109–142.
  • J.C. Nash, optimr: A replacement and extension of the ‘optim’ function (2016). Available at http://CRAN.R-project.org/package=optimr/.
  • E.C. Norton, H. Wang, and C. Ai, Computing interaction effects and standard errors in logit and probit models, Stata J. 4 (2004), pp. 154–167.
  • E. Otranto, M. Mucciardi, and P. Bertuccelli, Spatial effects in dynamic conditional correlations, J. Appl. Stat. 43 (2016), pp. 604–626.
  • S. Padoan and M. Bevilacqua, Analysis of random fields using CompRandFld, J. Stat. Softw. 63 (2015), pp. 9.
  • F. Peraza-Garay, J.U. Márquez-Urbina, and G. González-Farías, Inference for the analysis of ordinal data with spatio-temporal models, Int. J. Biostat. 16 (2020), pp. 20190101.
  • N. Privault, Understanding Markov Chains, Singapore, Springer, 2018.
  • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2021). Available at https://www.R-project.org/.
  • E.M. Schliep, N.K. Lany, P.L. Zarnetske, R.N. Schaeffer, C.M. Orians, D.A. Orwig, and E.L. Preisser, Joint species distribution modelling for spatio-temporal occurrence and ordinal abundance data, Glob. Ecol. Biogeogr. 27 (2018), pp. 142–155.
  • B.C. Sutradhar and R. Prabhakar Rao, Regression models for ordinal categorical time series data, in Advances in Time Series Methods and Applications, W.K. Li, D. Stanford, and H. Tu, eds., Fields Institute Communications Vol. 78, Springer, New York, 2016, pp. 179–197.
  • T.R. Ten Have, M.E. Miller, B.A. Reboussin, and M.K. James, Mixed effects logistic regression models for longitudinal ordinal functional response data with multiple-cause drop-out from the longitudinal study of aging, Biometrics 56 (2000), pp. 279–287.
  • W.R. Tobler, A computer movie simulating urban growth in the Detroit region, Econ. Geogr. 46 (1970), pp. 234–240.
  • W. Xu, Y. Gao, Y. Wang, and J. Guan, Protein–protein interaction prediction based on ordinal regression and recurrent convolutional neural networks, BMC Bioinform. 22 (2021), pp. 485.
  • J. Zhu, H. Huang, and J. Wu, Modeling spatial-temporal binary data using Markov random fields, J. Agric. Biol. Environ. Stat. 10 (2005), pp. 212–225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.