129
Views
0
CrossRef citations to date
0
Altmetric
Articles

Prediction and model evaluation for space–time data

, , &
Pages 2007-2024 | Received 08 Nov 2022, Accepted 21 Aug 2023, Published online: 03 Sep 2023

References

  • V.J. Berrocal, A.E. Gelfand, and D.M. Holland, A spatio-temporal downscaler for output from numerical models, J. Agric. Biol. Environ. Stat. 15 (2010), pp. 176–197.
  • V.J. Berrocal, Y. Guan, A. Muyskens, H. Wang, B.J. Reich, J.A. Mulholland, and H.H. Chang, A comparison of statistical and machine learning methods for creating national daily maps of ambient pm2. 5 concentration, Atmos. Environ. 222 (2020), pp. 117130.
  • P.J. Bickel and D.A. Freedman, Some asymptotic theory for the bootstrap, Ann. Stat. 9 (1981), pp. 1196–1217.
  • C. Brokamp, R. Jandarov, M. Hossain, and P. Ryan, Predicting daily urban fine particulate matter concentrations using a random forest model, Environ. Sci. Technol. 52 (2018), pp. 4173–4179.
  • N. Cressie and C.K. Wikle, Statistics for Spatio-Temporal Data, John Wiley & Sons, 2015.
  • A. Datta, S. Banerjee, A.O. Finley, and A.E. Gelfand, Hierarchical nearest-neighbor gaussian process models for large geostatistical datasets, J. Am. Stat. Assoc. 111 (2016), pp. 800–812.
  • P.J. Diggle, R. Menezes, and T.l. Su, Geostatistical inference under preferential sampling, J. R. Stat. Soc. Ser C (Appl. Stat.) 59 (2010), pp. 191–232.
  • S. Dudoit and M.J. van der Laan, Asymptotics of cross-validated risk estimation in estimator selection and performance assessment, Stat. Methodol. 2 (2005), pp. 131–154.
  • B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Stat. 7 (1979), pp. 1–26.
  • B. Efron, Estimating the error rate of a prediction rule: Improvement on cross-validation, J. Am. Stat. Assoc. 78 (1983), pp. 316–331.
  • B. Efron, The estimation of prediction error: Covariance penalties and cross-validation, J. Am. Stat. Assoc. 99 (2004), pp. 619–632.
  • B. Efron and R. Tibshirani, Improvements on cross-validation: The 632+ bootstrap method, J. Am. Stat. Assoc. 92 (1997), pp. 548–560.
  • A.E. Gelfand, S.K. Sahu, and D.M. Holland, On the effect of preferential sampling in spatial prediction, Environmetrics 23 (2012), pp. 565–578.
  • T. Gneiting, F. Balabdaoui, and A.E. Raftery, Probabilistic forecasts, calibration and sharpness, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69 (2007), pp. 243–268. doi:10.1111/j.1467-9868.2007.00587.x
  • T. Gneiting and A.E. Raftery, Strictly proper scoring rules, prediction, and estimation, J. Am. Stat. Assoc. 102 (2007), pp. 359–378.
  • Y. Guo, Q. Tang, D.Y. Gong, and Z. Zhang, Estimating ground-level pm2. 5 concentrations in beijing using a satellite-based geographically and temporally weighted regression model, Remote. Sens. Environ. 198 (2017), pp. 140–149.
  • M.J. Heaton, A. Datta, A.O. Finley, R. Furrer, J. Guinness, R. Guhaniyogi, F. Gerber, R.B. Gramacy, D. Hammerling, M. Katzfuss, and F. Lindgren, A case study competition among methods for analyzing large spatial data, J. Agri., Biol. Environ. Stat. 24 (2019), pp. 398–425.
  • X. Hu, J.H. Belle, X. Meng, A. Wildani, L.A. Waller, M.J. Strickland, and Y. Liu, Estimating pm2. 5 concentrations in the conterminous united states using the random forest approach, Environ. Sci. Technol. 51 (2017), pp. 6936–6944.
  • M. Katzfuss, A multi-resolution approximation for massive spatial datasets, J. Am. Stat. Assoc. 112 (2017), pp. 201–214.
  • J.P. Keller, H.H. Chang, M.J. Strickland, and A.A. Szpiro, Measurement error correction for predicted spatiotemporal air pollution exposures, Epidemiology 28 (2017), pp. 338–345.
  • R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in International Joint Conference on Artificial Intelligence, Vol. 14. Montreal, Canada, 1995, pp. 1137–1145.
  • K. Le Rest, D. Pinaud, P. Monestiez, J. Chadoeuf, and V. Bretagnolle, Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation, Glob. Ecol. Biogeogr. 23 (2014), pp. 811–820.
  • M. Lee, I. Kloog, A. Chudnovsky, A. Lyapustin, Y. Wang, S. Melly, B. Coull, P. Koutrakis, and J. Schwartz, Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the southeastern us 2003–2011, J. Expo. Sci. Environ. Epidemiol. 26 (2016), pp. 377–384.
  • J. Møller and R.P. Waagepetersen, Modern statistics for spatial point processes, Scand. J. Stat. 34 (2007), pp. 643–684.
  • J. Pohjankukka, T. Pahikkala, P. Nevalainen, and J. Heikkonen, Estimating the prediction performance of spatial models via spatial k-fold cross validation, Int. J. Geogr. Inf. Sci. 31 (2017), pp. 2001–2019.
  • C.E. Reid, M. Jerrett, M.L. Petersen, G.G. Pfister, P.E. Morefield, I.B. Tager, S.M. Raffuse, and J.R. Balmes, Spatiotemporal prediction of fine particulate matter during the 2008 northern california wildfires using machine learning, Environ. Sci. Technol. 49 (2015), pp. 3887–3896.
  • D.R. Roberts, V. Bahn, S. Ciuti, M.S. Boyce, J. Elith, G. Guillera-Arroita, S. Hauenstein, J.J. Lahoz-Monfort, B. Schröder, W. Thuiller, and D.I. Warton, Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure, Ecography 40 (2017), pp. 913–929.
  • J. Shao, Linear model selection by cross-validation, J. Am. Stat. Assoc. 88 (1993), pp. 486–494.
  • F. Sigrist, H.R. Künsch, and W.A. Stahel, Stochastic partial differential equation based modelling of large space–time data sets, J. R. Stat. Soc., Ser. B 77 (2015), pp. 3–33.
  • M. Stone, Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc. Ser. B (Methodol.) 36 (1974), pp. 111–147.
  • A.A. Szpiro and C.J. Paciorek, Measurement error in two-stage analyses, with application to air pollution epidemiology, Environmetrics 24 (2013), pp. 501–517.
  • M.J. Van der Laan, E.C. Polley, and A.E. Hubbard, Super learner, Stat. Appl. Genet. Mol. Biol. 6 (2007).
  • A. Van Donkelaar, R.V. Martin, R.J. Spurr, and R.T. Burnett, High-resolution satellite-derived pm2.5 from optimal estimation and geographically weighted regression over north america, Environ. Sci. Technol. 49 (2015), pp. 10482–10491.
  • G.L. Watson, D. Telesca, C.E. Reid, G.G. Pfister, and M. Jerrett, Machine learning models accurately predict ozone exposure during wildfire events, Environ. Pollut. 254 (2019), pp. 112792.
  • P. Zhang, Assessing prediction error in non-parametric regression, Scand. J. Stat. 22 (1995), pp. 83–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.