0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inference on exponentiated Rayleigh distribution with constant stress partially accelerated life tests under progressive type-II censoring

&
Received 18 Oct 2023, Accepted 21 Jun 2024, Published online: 16 Jul 2024

References

  • A.M. Abd-Elfattah, Goodness of fit test for the generalized rayleigh distribution with unknown parameters, J. Stat. Comput. Simul. 81 (2011), pp. 357–366.
  • T.A. Abushal and A.A. Soliman, Estimating the pareto parameters under progressive censoring data for constant-partially accelerated life tests, J. Stat. Comput. Simul. 85 (2015), pp. 917–934.
  • I. Alam and A. Ahmed, Inference on maintenance service policy under step-stress partially accelerated life tests using progressive censoring, J. Stat. Comput. Simul. 92 (2021), pp. 813–829.
  • J. Albert, Chapter introduction to bayesian computation, in Bayesian Computation with R, Springer New York, New York. 2009, pp. 87–88.
  • H.M. Aljohani and N.M. Alfar, Estimations with step-stress partially accelerated life tests for competing risks burr XII lifetime model under type-II censored data, Alex. Eng. J. 59 (2020), pp. 1171–1180.
  • S. Asadi, H. Panahi, C. Swarup, and S.A. Lone, Inference on adaptive progressive hybrid censored accelerated life test for gompertz distribution and its evaluation for virus-containing micro droplets data, Alex. Eng. J. 61 (2022), pp. 10071–10084.
  • N. Balakrishnan and R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Springer Science & Business Media, Boston, MA, 2000.
  • N. Balakrishnan, L. Bordes, and X. Zhao, Minimum-distance parametric estimation under progressive type-I censoring, IEEE Trans. Reliab. 59 (2010), pp. 413–425.
  • N. Balakrishnan, M. Jaenada, and L. Pardo, Non-destructive one-shot device test under step-stress experiment with lognormal lifetime distribution, J. Comput. Appl. Math. 437 (2024), pp. 115483.
  • N. Balakrishnan and R.A. Sandhu, A simple simulational algorithm for generating progressive type-II censored samples, Am. Stat. 49 (1995), pp. 229–230.
  • Y.F. Cheng and F.K. Wang, Estimating the burr XII parameters in constant-stress partially accelerated life tests under multiple censored data, Commun. Stat. Simul. Comput. 41 (2012), pp. 1711–1727.
  • K.F. Davies and W. Volterman, Progressively type-II censored competing risks data from the linear exponential distribution, Commun. Stat. Theory Methods 51 (2020), pp. 1444–1460.
  • N. Frikha and A. Sagna, Quantization based recursive importance sampling, Monte Carlo Methods Appl. 18 (2012), pp. 287–326.
  • Q. Fu and Y. Shi, Constant-partially accelerated life tests for marshall–olkin exponential series system with dependent masked data, Commun. Statist.-Simul. Comput. 46 (2017), pp. 7879–7893.
  • D. Han and H. Ng, Asymptotic comparison between constant-stress testing and step-stress testing for type-I censored data from exponential distribution, Commun. Stat. Theory Methods 43 (2014), pp. 2384–2394.
  • M. Han, E-bayesian estimation of the exponentiated distribution family parameter under LINEX loss function, Commun. Stat. Theory Methods 48 (2018), pp. 648–659.
  • S.R. Huang and S.J. Wu, Bayesian estimation and prediction for weibull model with progressive censoring, J. Stat. Comput. Simul. 82 (2012), pp. 1607–1620.
  • A.A. Ismail, On designing step-stress partially accelerated life tests under failure-censoring scheme, Proc. Inst. Mech. Eng. Pt. O J. Risk Reliab. 227 (2013), pp. 662–670.
  • A.A. Ismail and A.A. Al-Babtain, Planning failure-censored constant-stress partially accelerated life test, J. Syst. Eng. Electron. 26 (2015), pp. 644–650.
  • N. Khatun and M.A. Matin, A study on LINEX loss function with different estimating methods, Open. J. Stat. 10 (2020), pp. 52–63.
  • D. Kundu and M.Z. Raqab, Generalized rayleigh distribution: Different methods of estimations, Comput. Stat. Mathsemicolon Data Anal. 49 (2005), pp. 187–200.
  • A.O. Langlands, S.J. Pocock, G.R. Kerr, and S.M. Gore, Long-term survival of patients with breast cancer: A study of the curability of the disease, BMJ 2 (1979), pp. 1247–1251.
  • J.E. Lee and C.P. Robert, Importance sampling schemes for evidence approximation in mixture models, Bayesian Anal. 11 (2016), pp. 573–597.
  • S.A. Lone, H. Panahi, and I. Shah, Bayesian prediction interval for a constant-stress partially accelerated life test model under censored data, J. Taibah Univ. Sci. 15 (2021), pp. 1178–1187.
  • K. Maiti and S. Kayal, Estimation of parameters and reliability characteristics for a generalized rayleigh distribution under progressive type-II censored sample, Commun. Stat. Simul. Comput. 50 (2019), pp. 3669–3698.
  • H. Ng, P. Chan, and N. Balakrishnan, Estimation of parameters from progressively censored data using em algorithm, Comput. Stat. Data. Anal. 39 (2002), pp. 371–386.
  • H.K. Ng, L Luo, Y Hu, and F Duan, Parameter estimation of three-parameter weibull distribution based on progressively type-II censored samples, J. Stat. Comput. Simul. 82 (2012), pp. 1661–1678.
  • E. Pena and A. Gupta, Bayes estimation for the marshall-olkin exponential distribution, J. R. Stat. Soc.: Ser. B (Methodolog.) 52 (1990), pp. 379–389.
  • B. Pradhan and D. Kundu, On progressively censored generalized exponential distribution, Test 18 (2009), pp. 497–515.
  • M.Z. Raqab and D. Kundu, Burr type X distribution: Revisited, J. Probab. Stat. Sci. 4 (2006), pp. 179–193.
  • M.Z. Raqab and M.T. Madi, Inference for the generalized rayleigh distribution based on progressively censored data, J. Stat. Plan. Inference. 141 (2011), pp. 3313–3322.
  • H. Ren, Q. Gong, and X. Hu, Estimation of entropy for generalized rayleigh distribution under progressively type-II censored samples, Axioms 12 (2023), pp. 776.
  • A. Sadek, K.S. Sultan, and N. Balakrishnan, Bayesian estimation based on ranked set sampling using asymmetric loss function, Bull. Malays. Math. Sci. Soc. 38 (2014), pp. 707–718.
  • B.L. Shen, S. Wang, W.X. Chen, and M. Chen, Fisher information for generalized rayleigh distribution in ranked set sampling design with application to parameter estimation, Appl. Math.-A J. Chinese Univ. 37 (2022), pp. 615–630.
  • K.S. Sultan, N.H. Alsadat, and D. Kundu, Bayesian and maximum likelihood estimations of the inverse weibull parameters under progressive type-II censoring, J. Stat. Comput. Simul. 84 (2013), pp. 2248–2265.
  • J. Surles and W. Padgett, Inference for reliability and stress-strength for a scaled burr type X distribution, Lifetime. Data. Anal. 7 (2001), pp. 187–200.
  • D.R. Thomas and W.M. Wilson, Linear order statistic estimation for the two-parameter weibull and extreme-value distributions from type II progressively censored samples, Technometrics 14 (1972), pp. 679–691.
  • H.K. Tony Ng, Progressively censored data analysis, 2021.
  • H.R. Varian, A bayesian approach to real estate assessment, in Studies in Bayesian Econometrics and Statistics in Honor of Leonard J Savage, Elsevier (North Holland Publishing Co.), Amsterdam, 1975, pp. 195–208.
  • S. Xiaolin, L. Pu, and S. Yimin, Inference and optimal design on step-stress partially accelerated life test for hybrid system with masked data, J. Syst. Eng. Electron. 29 (2018), pp. 1089–1100.
  • A. Zellner, Bayesian estimation and prediction using asymmetric loss functions, J. Am. Stat. Assoc. 81 (1986), pp. 446–451.
  • Z. Zhang and W. Gui, Statistical inference of reliability of generalized rayleigh distribution under progressively type-II censoring, J. Comput. Appl. Math. 361 (2019), pp. 295–312.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.