140
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication and characterisation of copper–alumina nanocomposites prepared by high-energy fast milling

&
Pages 1212-1217 | Received 23 Jun 2015, Accepted 16 Oct 2015, Published online: 08 Feb 2016

References

  • N. Zanganeh, S. Zanganeh, A. Rajabi, M. Allahkarami, R. Rahbari Ghahnavyeh, A. Moghaddas, M. Aieneravaie, N. Asadizanjani, and S. Sadrnezhaad: ‘Flower-like Boehmite nanostructure formation in two-steps’, J. Coord. Chem., 2014, 67, (3), 555–562. doi: 10.1080/00958972.2014.892590
  • N. Zanganeh, A. Rajabi, M. Torabi, M. Allahkarami, A. Moghaddas, and S. Sadrnezhaad: ‘Growth and microstructural investigation of multiwall carbon nanotubes fabricated using electrodeposited nickel nanodeposits and chemical vapor deposition method’, J. Mol. Struct., 2014, 1074, 250–254. doi: 10.1016/j.molstruc.2014.06.012
  • A. Rajabi, M. Aieneravaie, V. Dorosti, and S. Sadrnezhaad: ‘Development and biomedical application of nanocomposites: in situ fabrication of ZnO–PbO nanocomposite through microwave method’, Mater. Technol.: Adv. Perform. Mater., 2014 , 29, 227–231.
  • A. A. Firoozi, M. R. Taha, A. A. Firoozi, and T. A. Khan: ‘Effect of ultrasonic treatment on clay microfabric evaluation by atomic force microscopy’, Measurement, 2015, 66, 244–252. doi: 10.1016/j.measurement.2015.02.033
  • A. D. Moghadam, E. Omrani, P. L. Menezes, and P. K. Rohatgi: ‘Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – a review’, Compos. Part B – Eng., 2015, 77, 402–420. doi: 10.1016/j.compositesb.2015.03.014
  • I. El-Mahallawi, H. Abdelkader, L. Yousef, A. Amer, J. Mayer, and A. Schwedt: ‘Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated AlSi hypoeutectic alloys’, Mater. Sci. Eng. A, 2012, 556, 76–87. doi: 10.1016/j.msea.2012.06.061
  • G.-R. Yang, W.-M. Song, J.-J. Lu, Y. Hao, Y.-M. Li, and Y. Ma: ‘Microstructure of surface composite Al2O3/Ni on copper substrate produced by vacuum infiltration casting’, Mater. Sci. Eng. A, 2006, 418, (1), 223–228. doi: 10.1016/j.msea.2005.11.029
  • G.-R. Yang, W.-M. Song, J.-J. Lu, Y. Hao, and Y. Ma: ‘Three-point bending behavior of surface composite Al 2 O 3/Ni on bronze substrate produced by vacuum infiltration casting’, J. Mater. Process. Tech., 2008, 202, (1), 195–200. doi: 10.1016/j.jmatprotec.2007.08.066
  • D. Das, A. Samanta, and P. Chattopadhyay: ‘Synthesis of bulk nano-Al2O3 dispersed Cu-matrix composite using ball milled precursor’, Mater. Manuf. Process., 2007, 22, (4), 516–524. doi: 10.1080/10426910701236056
  • H. Monshat, S. Serajzadeh, J. Akhgar, and A. Kamankesh: ‘Effect of strain path change on mechanical properties and final microstructure of Cu–Al2O3 in equal channel angular pressing’, Mater. Sci. Technol., 2013, 29, (2), 210–218. doi: 10.1179/1743284712Y.0000000082
  • S. Ranjbar Motlagh, M. Maghsoudi, and S. Serajzadeh: ‘Softening behaviour of alumina reinforced copper processed by equal channel angular pressing’, Mater. Sci. Technol., 2014, 30, (2), 220–226. doi: 10.1179/1743284713Y.0000000337
  • A. Motaman and E. Salahi: ‘Synthesis of Cu–Al2O3 metal matrix nanocomposite powder from CuO and Al powders by using high energy planetary fast milling’, Int. J. Nanosci., 2009, 8, (03), 261–266. doi: 10.1142/S0219581X09006201
  • A. Fathy and O. El-Kady: ‘Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites’, Mater. Des., 2013, 46, 355–359. doi: 10.1016/j.matdes.2012.10.042
  • S. Maikap, R. Panja, and D. Jana: ‘Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture’, Nanoscale Res. Lett., 2014, 9, (1), 1–9. doi: 10.1186/1556-276X-9-1
  • K. Song, X. Guo, S. Liang, P. Zhao, and Y. Zhang: ‘Relationship between interfacial stress and thermal expansion coefficient of copper-matrix composites with different reinforced phases’, Mater. Sci. Technol., 2014, 30, (2), 171–175. doi: 10.1179/1743284713Y.0000000332
  • C. Aktas, E. Dörrschuck, C. Schuh, M. M. Miró, J. Lee, N. Pütz, G. Wennemuth, W. Metzger, M. Oberringer, and M. Veith: ‘Micro-and nanostructured Al 2 O 3 surfaces for controlled vascular endothelial and smooth muscle cell adhesion and proliferation’, Mater. Sci. Eng. C, 2012, 32, (5), 1017–1024. doi: 10.1016/j.msec.2012.02.032
  • A. Rajabi, M. Ghazali, J. Syarif, and A. Daud: ‘Development and application of tool wear: a review of the characterization of TiC-based cermets with different binders’, Chem. Eng. J., 2014, 255, 445–452. doi: 10.1016/j.cej.2014.06.078
  • A. Rajabi, M. J. Ghazali, and A. R. Daud: ‘Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet – a review’, Mater. Des., 2015, 67, 95–106. doi: 10.1016/j.matdes.2014.10.081
  • M. Tabandeh-Khorshid, E. Omrani, P. L. Menezes, and P. K. Rohatgi: ‘Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets’, Eng. Sci. Technol., Int. J., 2015. doi:10.1016/j.jestch.2015.09.005
  • K. Song, J. Xing, Q. Dong, P. Liu, B. Tian, and X. Cao: ‘Optimization of the processing parameters during internal oxidation of Cu–Al alloy powders using an artificial neural network’, Mater. Des., 2005, 26, (4), 337–341. doi: 10.1016/j.matdes.2004.06.002
  • D. Lee and B. Kim: ‘Nanostructured Cu–Al2O3 composite produced by thermochemical process for electrode application’, Mater. Lett., 2004, 58, (3), 378–383. doi: 10.1016/S0167-577X(03)00505-6
  • I.-J. Shon, J.-Y. Lee, K.-S. Nam, B.-M. Moon, and D.-M. Lee: ‘Mechanical synthesis and rapid consolidation of a nanocrystalline Cu-Al2O3 composite by high frequency induction heated sintering’, Electron. Mater. Lett., 2009, 5, (2), 77–81. doi: 10.3365/eml.2009.06.077
  • M. Razavi, M. Rahimipour, and A. Rajabi: ‘Prenucleation effect on characterisations of synthesised nanocrystalline tungsten carbide via mechanical milling’, Mater. Technol.: Adv. Perform. Mater., 2013, 28, (3), 145–154. doi: 10.1179/1753555712Y.0000000045
  • M. Seyednezhad, A. Rajabi, A. Muchtar, and M. R. Somalu: ‘Characterization of IT-SOFC non-symmetrical anode sintered through conventional furnace and microwave’, Ceram. Inter., 2015, 41, (4), 5663–5669. doi: 10.1016/j.ceramint.2014.12.151
  • M. Seyednezhad, A. Rajabi, A. Muchtar, and M. R. Somalu: ‘Nanostructured and Non-Symmetrical NiO–SDC/SDC Composite Anode Performance via a Microwave-Assisted Route for Intermediate-Temperature Solid Oxide Fuel Cells’, Mater. Manuf. Process., 2015. doi:10.1080/10426914.2015.1048466
  • S. M. Umbrajkar, M. Schoenitz, and E. L. Dreizin: ‘Exothermic reactions in Al–CuO nanocomposites’, Thermochim. Acta, 2006, 451, (1), 34–43. doi: 10.1016/j.tca.2006.09.002
  • J. Kwon, J. M. Ducéré, P. Alphonse, M. Bahrami, M. Petrantoni, J.-F. Veyan, C. Tenailleau, A. Estève, C. Rossi, and Y. J. Chabal: ‘Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction’, ACS Appl. Mater. Int., 2013, 5, (3), 605–613. doi: 10.1021/am3019405
  • S. Swaminathan, M. R. Shankar, S. Lee, J. Hwang, A. H. King, R. F. Kezar, B. C. Rao, T. L. Brown, S. Chandrasekar, and W. D. Compton: ‘Large strain deformation and ultra-fine grained materials by machining’, Mater. Sci. Eng. A, 2005, 410, 358–363. doi: 10.1016/j.msea.2005.08.139
  • D. Ying and D. Zhang: ‘Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling’, Mater. Sci. Eng. A, 2000, 286, (1), 152–156. doi: 10.1016/S0921-5093(00)00627-4
  • B. D. Cullity and S. R. Stock: ‘Elements of X-ray diffraction’, 2001, NJ, Prentice Hall.
  • M. D. Chermahini, M. Zandrahimi, H. Shokrollahi, and S. Sharafi: ‘The effect of milling time and composition on microstructural and magnetic properties of nanostructured Fe–Co alloys’, J. Alloy. Compd., 2009, 477, (1), 45–50. doi: 10.1016/j.jallcom.2008.10.163
  • V. Mote, Y. Purushotham, and B. Dole: ‘Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles’, J. Theor. App. Phys., 2012, 6, (1), 1–8. doi: 10.1186/2251-7235-6-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.