301
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Internal fatigue crack initiation in drawn Ti–6Al–4V wires

, &
Pages 1639-1645 | Received 31 Aug 2015, Accepted 26 Oct 2015, Published online: 20 Jan 2016

References

  • R. R. Boyer: ‘An overview on the use of titanium in the aerospace industry’, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., 1996, 213, (1–2), 103–114. doi: 10.1016/0921-5093(96)10233-1
  • I. Marines-Garcia, P. C. Paris, H. Tada, C. Bathias, and D. Lados: ‘Fatigue crack growth from small to large cracks on very high cycle fatigue with fish-eye failures’, Eng. Fract. Mech., 2008, 75, (6), 1657–1665. doi: 10.1016/j.engfracmech.2007.05.015
  • J. H. Zuo, Z. G. Wang, and E. H. Han: ‘Effect of microstructure on ultra-high cycle fatigue behavior of Ti–6Al–4V’, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., 2008, 473, (1–2), 147–152. doi: 10.1016/j.msea.2007.04.062
  • M. Hamada and O. Umezawa: ‘Evaluation of subsurface fatigue crack life in forged Ti–6Al–4V alloys at cryogenic temperatures’, ISIJ Int., 2009, 49, (1), 124–131. doi: 10.2355/isijinternational.49.124
  • V. Kazymyrovych: ‘Very high cycle fatigue of engineering materials: a literature review’; 2009, Karlstad, Sweden, Karlstad University Studies.
  • C. Bathias: ‘There is no infinite fatigue life in metallic materials’, Fatigue Fract. Eng. Mater. Struct., 1999, 22, (7), 559–565. doi: 10.1046/j.1460-2695.1999.00183.x
  • S. K. Jha, C. J. Szczepanski, P. J. Golden, W. J. Porter, and R. John: ‘Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti–6Al–4V’, Int. J. Fatigue, 2012, 42, 248–257. doi: 10.1016/j.ijfatigue.2011.11.017
  • Y. Furuya and E. Takeuchi: ‘Gigacycle fatigue properties of Ti–6Al–4V alloy under tensile mean stress’, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., 2014, 598, 135–140. doi: 10.1016/j.msea.2014.01.019
  • A. Atrens, W. Hoffelner, T. W. Duerig, and J. E. Allison: ‘Subsurface crack initiation in high cycle fatigue in Ti6Al4V and in a typical martensitic stainless-steel’, Scr. Metall., 1983, 17, (5), 601–606. doi: 10.1016/0036-9748(83)90385-X
  • D. F. Neal and P. A. Blenkinsop: ‘Internal fatigue origins in alpha–beta titanium-alloys’, Acta Metall., 1976, 24, (1), 59–63. doi: 10.1016/0001-6160(76)90147-4
  • H. Oguma and T. Nakamura: ‘The effect of microstructure on very high cycle fatigue properties in Ti–6Al–4V’, Scr. Mater., 2010, 63, (1), 32–34. doi: 10.1016/j.scriptamat.2010.02.043
  • R. K. Nalla, B. L. Boyce, J. P. Campbell, J. O. Peters, and R. O. Ritchie: ‘Influence of microstructure on high-cycle fatigue of Ti–6Al–4V: bimodal vs. lamellar structures’, Metall. Mater. Trans. A – Phys. Metall. Mater. Sci., 2002, 33, (3), 899–918. doi: 10.1007/s11661-002-0160-z
  • S. K. Jha and K. S. R. Chandran: ‘An unusual fatigue phenomenon: duality of the S–N fatigue curve in the beta-titanium alloy Ti–10V–2Fe–3Al’, Scr. Mater., 2003, 48, (8), 1207–1212. doi: 10.1016/S1359-6462(02)00565-1
  • O. Umezawa and K. Nagai: ‘Fatigue, cyclic deformation and microstructure. Subsurface crack generation in high-cycle fatigue for high strength alloys.’, ISIJ Int., 1997, 37, (12), 1170–1179. doi: 10.2355/isijinternational.37.1170
  • E. Takeuchi, Y. Furuya, N. Nagashima, and S. Matsuoka: ‘The effect of frequency on the giga-cycle fatigue properties of a Ti–6Al–4V alloy’, Fatigue Fract. Eng. Mater. Struct., 2008, 31, (7), 599–605. doi: 10.1111/j.1460-2695.2008.01257.x
  • H. Oguma and T. Nakamura: ‘The effect of stress ratios on very high cycle fatigue properties of Ti-6AI-4V’, in ‘Advances in fracture and failure prevention, Pts 1 and 2’, (ed. K. Kishimoto et al.), 1227–1232; 2004, Zurich-Uetikon, Trans Tech.
  • A. J. McEvily, T. Nakamura, H. Oguma, K. Yamashita, H. Matsunaga, and M. Endo: ‘On the mechanism of very high cycle fatigue in Ti–6Al–4V’, Scr. Mater., 2008, 59, (11), 1207–1209. doi: 10.1016/j.scriptamat.2008.08.012
  • S. Heinz, F. Balle, G. Wagner, and D. Eifler: ‘Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry’, Ultrasonics, 2013, 53, (8), 1433–1440. doi: 10.1016/j.ultras.2013.03.002
  • C. Bathias, L. Drouillac, and P. Le Francois: ‘How and why the fatigue S–N curve does not approach a horizontal asymptote’, Int. J. Fatigue, 2001, 23, 143–151. doi: 10.1016/S0142-1123(01)00123-2
  • H. Yokoyama, O. Umezawa, K. Nagai, and T. Suzuki: ‘Fatigue, cyclic deformation and microstructure. Distribution of internal crack initiation sites in high-cycle fatigue for titanium alloys.’, ISIJ Int., 1997, 37, (12), 1237–1244. doi: 10.2355/isijinternational.37.1237
  • N. E. Paton, J. C. Williams, J. C. Chesnutt, and A. W. Thompson, ‘The effects of microstructure on the fatigue and fracture of commercial titanium alloys’, in Specialists meeting on alloy design for fatigue and fracture resistance: papers presented at the ‘40th meeting of the structures and materials panel in Brussels’, Belgium, 13–19 April 1975. 1976, 1976, London, London Agard.
  • K. Lambrighs, M. Wevers, B. Verlinden, and I. Verpoest: ‘A fracture mechanics approach to fatigue of heavily drawn steel wires’, 11th Int. Conf. on ‘Mechanical behavior of materials (ICM11)’, Como, Italy, 2011, 10, 3259–3266.
  • R. K. Steele and A. J. McEvily: ‘High-cycle fatigue behavior of Ti–6Al–4V alloy’, Eng. Fract. Mech., 1976, 8, (1), 31–37. doi: 10.1016/0013-7944(76)90075-8
  • J. Lindemann and L. Wagner: ‘Mean stress sensitivity in fatigue of alpha, (alpha + beta) and beta titanium alloys’, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., 1997, 234–236, 1118–1121. doi: 10.1016/S0921-5093(97)00347-X
  • Y. Ono, T. Yuri, H. Sumiyoshi, S. Matsuoka, and T. Ogata: ‘Subsurface fracture in high-cycle fatigue at cryogenic temperatures in Ti–5% Al–2.5% Sn extra low interstitial alloy’, Mater. Trans., 2003, 44, (9), 1702–1705. doi: 10.2320/matertrans.44.1702
  • S. G. Ivanova, R. R. Biederman, and R. D. Sisson: ‘Investigation of fatigue crack initiation in Ti–6Al–4V during tensile–tensile fatigue’, J. Mater. Eng. Perform., 2002, 11, (2), 226–231. doi: 10.1361/105994902770344312
  • F. Bridier, P. Villechaise, and J. Mendez: ‘Slip and fatigue crack formation processes in an alpha/beta titanium alloy in relation to crystallographic texture on different scales’, Acta Mater., 2008, 56, (15), 3951–3962. doi: 10.1016/j.actamat.2008.04.036
  • K. Tokaji, K. Ohya, and H. Kariya: ‘Subsurface fatigue crack initiation in beta titanium alloys’, Fatigue Fract. Eng. Mater. Struct., 2000, 23, (9), 759–766. doi: 10.1046/j.1460-2695.2000.00325.x
  • M. R. Bache: ‘Processing titanium alloys for optimum fatigue performance’, Int. J. Fatigue, 1999, 21, 105–111. doi: 10.1016/S0142-1123(99)00061-4
  • A. L. Pilchak, A. Bhattacharjee, A. H. Rosenberger, and J. C. Williams: ‘Low delta K faceted crack growth in titanium alloys’, Int. J. Fatigue, 2009, 31, (5), 989–994. doi: 10.1016/j.ijfatigue.2008.03.036
  • I. Bantounas, D. Dye, and T. C. Lindley: ‘The role of microtexture on the faceted fracture morphology in Ti–6Al–4V subjected to high-cycle fatigue’, Acta Mater., 2010, 58, (11), 3908–3918. doi: 10.1016/j.actamat.2010.03.036
  • C. Sarrazin-Baudoux: ‘Environmentally influenced fatigue crack path in titanium alloys’, Proc. of ‘Fatigue crack paths (FCP 2003)’, Parma, Italy, 2003.
  • M. R. Bache, W. J. Evans, and M. McElhone: ‘The effects of environment and internal oxygen on fatigue crack propagation in Ti–6Al–4V’, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., 1997, 234-236, 918–922. doi: 10.1016/S0921-5093(97)00402-4
  • G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen, S. Van Bael, J. Schrooten, and M. Wevers: ‘Surface modification of Ti6Al4V open porous structures produced by additive manufacturing’, Adv. Eng. Mater., 2012, 14, (6), 363–370. doi: 10.1002/adem.201100344
  • T. Akahori and M. Niinomi: ‘Fracture characteristics of fatigued Ti–6Al–4V ELI as an implant material’, Mater. Sci. Eng. A – Struct. Mater. Prop. Microstruct. Process., 1998, 243, (1–2), 237–243. doi: 10.1016/S0921-5093(97)00807-1
  • H. Oguma: ‘Very high cycle fatigue properties of Ti–6Al–4V alloy’, PhD thesis, Hokkaido University, Hokkaido, 2006, 152–157.
  • H. Knobbe, P. Koster, H. J. Christ, C. P. Fritzen, and M. Riedler: ‘Initiation and propagation of short fatigue cracks in forged Ti6Al4V’, Fatigue 2010, 2010, 2, (1), 931–940.
  • I. Bantounas, D. Dye, and T. C. Lindley: ‘The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti–6Al–4V’, Acta Mater., 2009, 57, (12), 3584–3595. doi: 10.1016/j.actamat.2009.04.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.