330
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Modelling the plastic deformation of Ti6Al4V under dynamic loading

, , , &
Pages 1646-1653 | Received 10 Sep 2015, Accepted 12 Dec 2015, Published online: 29 Jan 2016

References

  • J. Galán, P. Verleysen and J. Degrieck: ‘Thermal effects during tensile deformation of Ti-6Al-4V at different strain rates’, Strain, 2013, 49, 354–365. doi: 10.1111/str.12042
  • J. Peirs, P. Verleysen, W. Van Paepegem and J. Degrieck: ‘Determining the stress-strain behaviour at large strains from high strain rate tensile and shear experiments’, Int. J. Impact Eng., 2011, 38, 406–415. doi: 10.1016/j.ijimpeng.2011.01.004
  • G. Gilles, W. Hammami, V. Libertiaux, O. Cazacu, J. H. Yoon, T. Kuwabara and A. M. Hebraken: ‘Experimental characterization and elasto-plactis modeling of the quasistatc mechanical response of TA-6V at room temperature’, Int. J. Solids Struct., 2011, 48, 1277–1289. doi: 10.1016/j.ijsolstr.2011.01.011
  • A. K. Singh and R. A. Schwarzer: ‘Texture and anisotropy of mechanical properties in titanium ans its alloys’, Z. Metall., 2000, 91, 702–716.
  • C. N. Tomé and R. A. Lebensohn: ‘Manual for code VISCO-PLASTIC SELF-CONSISTENT (VPSC)’, Version 7b; 2007, Los Alamos National Laboratory.
  • R. A. Lebensohn and C. N. Tomé: ‘A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of poly crystals: Application to zirconium alloys’, Acta Metall. Mater., 1993, 41, 2611–2624. doi: 10.1016/0956-7151(93)90130-K
  • O. Castelnau, G. Canova, R. Lebensohn and P. Duval: ‘Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self-Consistent approach’, Acta Mater., 1997, 45, 4823–4834. doi: 10.1016/S1359-6454(97)00098-0
  • R. Lebensohn, H.-R. Wenk and C. Tome: ‘Modelling deformation and recrystallization textures in calcite’, Acta Mater., 1998, 46, 2683–2693. doi: 10.1016/S1359-6454(97)00477-1
  • R. Lebensohn and C. Tomé: ‘A self-consistent viscoplastic model: Prediction of rolling textures of anisotropic polycrystals’, Mater. Sci. Eng. A, 1994, 175, 71–82. doi: 10.1016/0921-5093(94)91047-2
  • F. Coghe, W. Tirry, L. Rabet, D. Schryvers, and P. V. Houtte: ‘Importance of twinning in static and dynamic compression of a Ti-6Al-4V titanium alloy with an equiaxed microstructure’, Mater. Sci. Eng. A, 2012, 537, 1–10. doi: 10.1016/j.msea.2011.12.047
  • R. Lebensohn and G. Canova: ‘A self-consistent approach for modelling texture development of two-phase polycrystals: Application to titanium alloys’, Acta Mater., 1997, 45, 3687–3694. doi: 10.1016/S1359-6454(97)00067-0
  • C. Tomé, C. Necker and R. Lebensohn: ‘Mechanical anisotropy and grain interaction in recrystallized aluminum’, Metall. Trans. A, 2002, 33, 2635–2648. doi: 10.1007/s11661-002-0385-x
  • M. Knezevic, R. A. Lebensohn, O. Cazacu, B. Revil-Baudard, G. Proust, S. C. Vogel and M. E. Nixon: ‘Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements’, Mater. Sci. Eng. A, 2013, 564, 116–126. doi: 10.1016/j.msea.2012.11.037
  • O. Cazacu, B. Plunkett and F. Barlat: ‘Orthotropic yield criterion for hexagonal closed packed metals’, Int. J. Plast., 2006, 22, 1171–1194. doi: 10.1016/j.ijplas.2005.06.001
  • B. Plunkett, O. Cazacu and F. Barlat: ‘Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals’, Int. J. Plast., 2008, 24, 847–866. doi: 10.1016/j.ijplas.2007.07.013
  • O. Cazacu, I. R. Ionescu and J. W. Yoon: ‘Orthotropic strain rate potential for the description of anisotropy in tension and compression of metals’, Int. J. Plast., 2010, 26, 887–904. doi: 10.1016/j.ijplas.2009.11.005
  • B. Plunkett, O. Cazacu, R. A. Lebensohn and F. Barlat: ‘Elastic-viscoplastic anisotropic modeling of rtextured metals and validation using the Taylor cylinder impact test’, Int. J. Plast., 2007, 23, 1001–1021. doi: 10.1016/j.ijplas.2006.10.008
  • A. S. Khan, R. Kazmi and B. Farrokh: ‘Multiaxial and non-propotional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy ove wide ranges of strain rates and temperatures’, Int. J. Plast., 2007, 23, 931–950. doi: 10.1016/j.ijplas.2006.08.006
  • N. Kotkunde, A. D. Deole, A. K. Gupta and S. K. Singh: ‘Experimental and numerical investigation of anisotropic yield criteria for warm deep drawing of Ti–6Al–4V alloy’, Mater. Des., 2014, 63, 336–344. doi: 10.1016/j.matdes.2014.06.017
  • E. L. Odenberger, M. Schill and M. Oldenburg: ‘Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V—PART 2: Constitutive modelling and validation’, Int. J. Mater. Form., 2013, 6, 403–416. doi: 10.1007/s12289-012-1094-7
  • V. Tuninetti, G. Gilles, O. Milis, T. Pardoen and A. M. Habraken: ‘Anisotropy and tension–compression asymmetry modeling of the room temperature plastic response of Ti–6Al–4V’, Int. J. Plast., 2015, 67, 53–68. doi: 10.1016/j.ijplas.2014.10.003
  • V. Tuninetti and A. M. Habraken: ‘Impact of anisotropy and viscosity to model the mechanical behavior of Ti–6Al–4V alloy’, Mater. Sci. Eng. A, 2014, 605, 39–50. doi: 10.1016/j.msea.2014.03.009
  • A. S. Khan, S. Yu and H. Liu: ‘Deformation induced anisotropic responses of Ti–6Al–4V alloy. Part II: A strain rate and temperature dependent anisotropic yield criterion’, Int. J. Plast., 2012, 38, 14–26. doi: 10.1016/j.ijplas.2012.03.013
  • Y. Lou, H. Huh and J. W. Yoon: ‘Consideration of strength differential effect in sheet metals with symmetric yield functions’, Int. J. Mech. Sci., 2013, 66, 214–223. doi: 10.1016/j.ijmecsci.2012.11.010
  • Y. Chen, K. Kibble, R. Hall and X. Huang: ‘Numerical analysis of superplastic blow forming of Ti–6Al–4V alloys’, Mater. Des., 2001, 22, 679–685. doi: 10.1016/S0261-3069(01)00009-7
  • B. K. Kad, S. E. Schoenfeld and M. S. Burkins: ‘Through thickness dynamic impact response in textured Ti–6Al–4V plates’, Mater. Sci. Eng. A, 2002, 322, 241–251. doi: 10.1016/S0921-5093(01)01135-2
  • F. Q. Li, J. H. Mo, J. J. Li, L. Huang and H. Y. Zhou: ‘Formability of Ti–6Al–4V titanium alloy sheet in magnetic pulse bulging’, Mater. Des., 2013, 52, 337–344. doi: 10.1016/j.matdes.2013.05.064
  • G. Gilles, A. M. Habraken and L. Duchêne: ‘Material parameter identification of Cazacu's model for Ti6Al4V using the simulated annealing algorithm’, Mater. Sci. Forum, 2010, 636–637, 1125–1130. doi: 10.4028/www.scientific.net/MSF.636-637.1125
  • D. Kakogiannis, F. Coghe and L. Rabet: ‘Modelling the deformation of Ti64 sheets under explosive loading’, Design and analysis of protective structures: Proceedings of the 3rd International Conference on Protective Structures (ICPS3), (ed. M. G. Stewart and M. D. Netherton), Newcastle, Australia, February 2015.
  • H. Ousji, M. A. Louar, B. Belkassem, L. Pyl and J. Vantomme: ‘Parametric study of an explosive driven shock tube’, 23rd International Symposium on Military Aspects of Blast and Shock (MABS 23), Oxford, UK, September 2014.
  • M. A. Louar, B. Belkassem, H. Ousji, K. Spranghers, D. Kakogiannis, L. Pyl and J. Vantomme: ‘Explosive driven shock tube loading of aluminium plates: Experimental study’, Int. J. Impact Eng., 2015, 86, 111–123. doi: 10.1016/j.ijimpeng.2015.07.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.