7,109
Views
73
CrossRef citations to date
0
Altmetric
Reviews

Predicting the performance of tungsten in a fusion environment: a literature review

ORCID Icon
Pages 388-399 | Received 18 Jan 2016, Accepted 20 Apr 2016, Published online: 06 Jun 2016

References

  • IEA, ‘World Energy Outlook 2015 Factsheet – Global energy trends to 2040’, 2015.
  • S. Chu and A. Majumdar: ‘Opportunities and challenges for a sustainable energy future’, Nature, Aug. 2012, 488, 294–303. doi: 10.1038/nature11475
  • M. S. Dresselhaus and I. L. Thomas: ‘Alternative energy technologies’, Nature, Nov. 2001, 414, 332–337. doi: 10.1038/35104599
  • D. J. Ward, I. Cook, Y. Lechon, and R. Saez: ‘The economic viability of fusion power’, Fusion Eng. Design, 2005, 75–79, 1221–1227. doi: 10.1016/j.fusengdes.2005.06.160
  • E. E. Bloom: ‘The challenge of developing structural materials for fusion power systems’, J. Nucl. Mater., Oct. 1998, 258–263, 7–17. doi: 10.1016/S0022-3115(98)00352-3
  • H. Bolt, V. Barabash, G. Federici, J. Linke, A. Loarte, J. Roth, and K. Sato: ‘Plasma facing and high heat flux materials – needs for ITER and beyond’, J. Nucl. Mater., Dec. 2002, 307–311, 43–52. doi: 10.1016/S0022-3115(02)01175-3
  • H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, and N. Yoshida: ‘Materials for the plasma-facing components of fusion reactors’, J. Nucl. Mater., Aug. 2004, 329–333, 66–73. doi: 10.1016/j.jnucmat.2004.04.005
  • S. J. Zinkle and J. T. Busby: ‘Structural materials for fission & fusion energy’, Mater. Today, Nov. 2009, 12, 12–19. doi: 10.1016/S1369-7021(09)70294-9
  • J. Schlosser, A. Cardella, P. Chappuis, J. Coston, P. Deschamps, and M. Lipa: ‘Development of high thermal flux components for continuous operation in Tokamaks’, 14th IEEE / NPSS Symposium: Fusion Engineering, Proceedings, Vols. 1 and 2, 1992, 350–356.
  • S. Krat, Y. Gasparyan, A. Pisarev, I. Bykov, M. Mayer, G. de Saint Aubin, M. Balden, C. P. Lungu, and A. Widdowson: ‘Erosion at the inner wall of JET during the discharge campaign 2011–2012 in comparison with previous campaigns’, J. Nucl. Mater., Jan. 2015, 456, 106–110. doi: 10.1016/j.jnucmat.2014.08.010
  • J. Davis, V. Barabash, A. Makhankov, L. Plöchl, and K. Slattery: ‘Assessment of tungsten for use in the ITER plasma facing components’, J. Nucl. Mater., Oct. 1998, 258–263, 308–312. doi: 10.1016/S0022-3115(98)00285-2
  • F. Romanelli: ‘Overview of the JET results with the ITER-like wall’, Nucl. Fusion, Oct. 2013, 53, 104002.
  • R. Neu, R. Dux, A. Kallenbach, T. Pütterich, M. Balden, J. Fuchs, A. Herrmann, C. Maggi, M. O'Mullane, R. Pugno, I. Radivojevic, V. Rohde, A. Sips, W. Suttrop, A. Whiteford, and T. A. U. Team: ‘Tungsten: an option for divertor and main chamber plasma facing components in future fusion devices’, Nucl. Fusion, Mar. 2005, 45, 209–218. doi: 10.1088/0029-5515/45/3/007
  • M. Rieth, S. L. Dudarev, S. M. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, S. Antusch, D. E. J. Armstrong, M. Balden, N. Baluc, M.-F. Barthe, W. W. Basuki, M. Battabyal, C. S. Becquart, D. Blagoeva, H. Boldyryeva, J. Brinkmann, M. Celino, L. Ciupinski, J. B. Correia, A. De Backer, C. Domain, E. Gaganidze, C. García-Rosales, J. Gibson, M. R. Gilbert, S. Giusepponi, B. Gludovatz, H. Greuner, K. Heinola, T. Höschen, A. Hoffmann, N. Holstein, F. Koch, W. Krauss, H. Li, S. Lindig, J. Linke, C. Linsmeier, P. López-Ruiz, H. Maier, J. Matejicek, T. P. Mishra, M. Muhammed, A. Muñoz, M. Muzyk, K. Nordlund, D. Nguyen-Manh, J. Opschoor, N. Ordás, T. Palacios, G. Pintsuk, R. Pippan, J. Reiser, J. Riesch, S. G. Roberts, L. Romaner, M. Rosiński, M. Sanchez, W. Schulmeyer, H. Traxler, A. Ureña, J. G. van der Laan, L. Veleva, S. Wahlberg, M. Walter, T. Weber, T. Weitkamp, S. Wurster, M. A. Yar, J. H. You, and A. Zivelonghi: ‘Recent progress in research on tungsten materials for nuclear fusion applications in Europe’, J. Nucl. Mater., Jan. 2013, 432, 482–500. doi: 10.1016/j.jnucmat.2012.08.018
  • V. Barabash, G. Federici, J. Linke, and C. H. Wu: ‘Material/plasma surface interaction issues following neutron damage’, Journal of Nuclear Materials, March. 2003, 313–316, 42–51.
  • R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner: ‘On the use of SRIM for computing radiation damage exposure’, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Sep. 2013, 310, 75–80. doi: 10.1016/j.nimb.2013.05.008
  • T. Troev, N. Nankov, and T. Yoshiie: ‘Simulation of displacement cascades in tungsten irradiated by fusion neutrons’, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Mar. 2011, 269, 566–571. doi: 10.1016/j.nimb.2011.01.010
  • P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev: ‘Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals’, Phys. Rev. B, Aug. 2007, 76, 054107. doi: 10.1103/PhysRevB.76.054107
  • M. R. Gilbert, S. L. Dudarev, P. M. Derlet, and D. G. Pettifor: ‘Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten’, J. Phys.: Condens. Matter, Aug. 2008, 20, 345214.
  • S. L. Dudarev, R. Bullough, and P. M. Derlet: ‘Effect of the alpha-gamma phase transition on the stability of dislocation loops in bcc iron’, Phys. Rev. Lett., Apr. 2008, 100, 135503. doi: 10.1103/PhysRevLett.100.135503
  • X. Yi, M. L. Jenkins, M. Briceno, S. G. Roberts, Z. Zhou, and M. A. Kirk: ‘In situ study of self-ion irradiation damage in W and W-5Re at 500°C’, Philos. Mag., May 2013, 93, 1715–1738. doi: 10.1080/14786435.2012.754110
  • A. E. Sand, S. L. Dudarev, and K. Nordlund: ‘High-energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws’, EPL (Europhys. Lett.), 2013, 103, 46003. doi: 10.1209/0295-5075/103/46003
  • P. Kroupa: ‘The interaction between prismatic dislocation loops and straight dislocations. Part I’, Philos. Mag., May 1962, 7, 783–801. doi: 10.1080/14786436208212669
  • A. D. Brailsford and R. Bullough: ‘The rate theory of swelling due to void growth in irradiated metals’, J. Nucl. Mater., Aug. 1972, 44, 121–135. doi: 10.1016/0022-3115(72)90091-8
  • B. Singh and J. Evans: ‘Significant differences in defect accumulation behaviour between fcc and bcc crystals under cascade damage conditions’, J. Nucl. Mater., Nov. 1995, 226, 277–285. doi: 10.1016/0022-3115(95)00121-2
  • T. Lechtenberg: ‘Irradiation effects in ferritic steels’, J. Nucl. Mater., Aug. 1985, 133–134, 149–155. doi: 10.1016/0022-3115(85)90125-4
  • F. Ferroni, X. Yi, K. Arakawa, S. P. Fitzgerald, P. D. Edmondson, and S. G. Roberts: ‘High temperature annealing of ion irradiated tungsten’, Acta Mater., May 2015, 90, 380–393. doi: 10.1016/j.actamat.2015.01.067
  • M. R. Gilbert and J.-C. Sublet: ‘Neutron-induced transmutation effects in W and W-alloys in a fusion environment’, Nucl. Fusion, Apr. 2011, 51, 043005. doi: 10.1088/0029-5515/51/4/043005
  • T. Leonhardt: ‘Properties of tungsten–rhenium and tungsten–rhenium with hafnium carbide’, JOM, Jul. 2009, 61, 68–71. doi: 10.1007/s11837-009-0107-6
  • M. Ekman, K. Persson, and G. Grimvall: ‘Phase diagram and lattice instability in tungsten–rhenium alloys’, J. Nucl. Mater., Apr. 2000, 278, 273–276. doi: 10.1016/S0022-3115(99)00241-X
  • T. Tanno, A. Hasegawa, M. Fujiwara, J.-C. He, S. Nogami, M. Satou, T. Shishido, and K. Abe: ‘Precipitation of solid transmutation elements in irradiated tungsten alloys’, Mater. Trans., 2008, 49, (10), 2259–2264. doi: 10.2320/matertrans.MAW200821
  • N. Yoshida: ‘Review of recent works in development and evaluation of high-Z plasma facing materials’, J. Nucl. Mater., Mar. 1999, 266–269, 197–206. doi: 10.1016/S0022-3115(98)00817-4
  • D. Armstrong, C. Hardie, J. Gibson, A. Bushby, P. Edmondson, and S. Roberts: ‘Small-scale characterisation of irradiated nuclear materials: part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials’, J. Nucl. Mater., Jul. 2015, 462, 374–381. doi: 10.1016/j.jnucmat.2015.01.053
  • M. Jenkins: ‘Characterisation of radiation-damage microstructures by TEM’, J. Nucl. Mater., Oct. 1994, 216, 124–156. doi: 10.1016/0022-3115(94)90010-8
  • W. C. Oliver and G. M. Pharr: ‘Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology’, J. Mater. Res., Jan. 2004, 19, 3–20. doi: 10.1557/jmr.2004.19.1.3
  • E. Grieveson, D. Armstrong, S. Xu, and S. Roberts: ‘Compression of self-ion implanted iron micropillars’, J. Nucl. Mater., Nov. 2012, 430, 119–124. doi: 10.1016/j.jnucmat.2012.06.014
  • M. R. Gilbert, S. L. Dudarev, D. Nguyen-Manh, S. Zheng, L. W. Packer, and J. C. Sublet: ‘Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials’, J. Nucl. Mater., 2013, 442, (1–3 SUPPL. 1), S755–S760. doi: 10.1016/j.jnucmat.2013.03.085
  • K. Ehrlich and A. Möslang: ‘IFMIF – An International Fusion Materials Irradiation Facility’, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms, Apr. 1998, 139, 72–81. doi: 10.1016/S0168-583X(97)01006-9
  • L. K. Keys and J. Moteff: ‘Neutron irradiation and defect recovery of tungsten’, J. Nucl. Mater., Mar. 1970, 34, 260–280. doi: 10.1016/0022-3115(70)90193-5
  • J. Matolich, H. Nahm, and J. Moteff: ‘Swelling in neutron irradiated tungsten and tungsten-25 percent rhenium’, Scr. Metall., Jul. 1974, 8, 837–841. doi: 10.1016/0036-9748(74)90304-4
  • R. K. Williams, F. W. Wiffen, J. Bentley, and J. O. Stiegler: ‘Irradiation induced precipitation in tungsten based, W-Re alloys’, Metall. Trans. A, April. 1983, 14A, 655–666.
  • J. M. Steichen: ‘Tensile properties of neutron irradiated TZM and tungsten’, J. Nucl. Mater., Apr. 1976, 60, 13–19. doi: 10.1016/0022-3115(76)90112-4
  • G. Janeschitz, K. Borrass, G. Federici, Y. Igitkhanov, A. Kukushkin, H. D. Pacher, G. W. Pacher, and M. Sugihara: ‘The ITER divertor concept’, J. Nucl. Mater., Apr. 1995, 220–222, 73–88. doi: 10.1016/0022-3115(94)00447-1
  • A. Gibson: ‘Deuterium-tritium plasmas in the Joint European Torus (JET): behavior and implications’, Phys. Plasmas, May 1998, 5, 1839. doi: 10.1063/1.872854
  • T. Tanno, A. Hasegawa, J.-C. He, M. Fujiwara, S. Nogami, M. Satou, T. Shishido, and K. Abe: ‘Effects of transmutation elements on neutron irradiation hardening of tungsten’, Mater. Trans., 2007, 48, (9), 2399–2402. doi: 10.2320/matertrans.MAW200722
  • M. Fukuda, K. Yabuuchi, S. Nogami, A. Hasegawa, and T. Tanaka: ‘Microstructural development of tungsten and tungsten–rhenium alloys due to neutron irradiation in HFIR’, J. Nucl. Mater., Dec. 2014, 455, 460–463. doi: 10.1016/j.jnucmat.2014.08.002
  • P. R. Okamoto and L. E. Rehn: ‘Radiation-induced segregation in binary and ternary alloys’, J.Nucl. Mater., Aug. 1979, 83, 2–23. doi: 10.1016/0022-3115(79)90587-7
  • R. Herschitz and D. N. Seidman: ‘An atomic resolution study of radiation-induced precipitation and solute segregation effects in a neutron-irradiated W-25 at.% Re alloy’, Acta Metall., Aug. 1984, 32, 1155–1171. doi: 10.1016/0001-6160(84)90122-6
  • Y. Nemoto, A. Hasegawa, M. Satou, and K. Abe: ‘Microstructural development of neutron irradiated W-Re alloys’, J. Nucl. Mater., Dec. 2000, 283–287, 1144–1147. doi: 10.1016/S0022-3115(00)00290-7
  • T. Tanno, A. Hasegawa, J. C. He, M. Fujiwara, M. Satou, S. Nogami, K. Abe, and T. Shishido: ‘Effects of transmutation elements on the microstructural evolution and electrical resistivity of neutron-irradiated tungsten’, J. Nucl. Mater., Apr. 2009, 386–388, 218–221. doi: 10.1016/j.jnucmat.2008.12.091
  • T. Tanno, M. Fukuda, S. Nogami, and A. Hasegawa: ‘Microstructure development in neutron irradiated tungsten alloys’, Mater. Trans., Jun. 2011, 52, 1447–1451. doi: 10.2320/matertrans.MBW201025
  • M. Fukuda, T. Tanno, S. Nogami, and A. Hasegawa: ‘Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten’, Mater. Trans., Nov. 2012, 53, 2145–2150. doi: 10.2320/matertrans.MBW201110
  • L. Greenwood and F. Garner: ‘Transmutation of Mo, Re, W, Hf, and V in various irradiation test facilities and STARFIRE’, J. Nucl. Mater, September. 1994, 212–215, 635–639.
  • L. R. Greenwood and F. A. Garner: ‘Impact of transmutation issues on interpretation of data obtained from fast reactor irradiation experiments’, J. Nucl. Mater., Aug. 2004, 329–333, 1147–1150. doi: 10.1016/j.jnucmat.2004.04.272
  • J. He, G. Tang, A. Hasegawa, and K. Abe: ‘Microstructural development and irradiation hardening of W and W-(3–26) wt%Re alloys after high-temperature neutron irradiation to 0.15 dpa’, Nucl. Fusion, Nov. 2006, 46, 877–883. doi: 10.1088/0029-5515/46/11/001
  • A. Hasegawa, M. Fukuda, T. Tanno, and S. Nogami: ‘Neutron irradiation behavior of tungsten’, Mater. Trans., Mar. 2013, 54, 466–471. doi: 10.2320/matertrans.MG201208
  • A. Hasegawa, T. Tanno, S. Nogami, and M. Satou: ‘Property change mechanism in tungsten under neutron irradiation in various reactors’, J. Nucl. Mater., Oct. 2011, 417, 491–494. doi: 10.1016/j.jnucmat.2010.12.114
  • R. Nelson, D. Mazey, and J. Hudson: ‘The use of ion accelerators to simulate fast neutron-induced voidage in metals’, J. Nucl. Mater., Oct. 1970, 37, 1–12. doi: 10.1016/0022-3115(70)90176-5
  • M. Toloczko, F. Garner, V. Voyevodin, V. Bryk, O. Borodin, V. Mel'nychenko, and A. Kalchenko: ‘Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa’, J. Nucl. Mater., Oct. 2014, 453, 323–333. doi: 10.1016/j.jnucmat.2014.06.011
  • G. S. Was: ‘Fundamentals of radiation materials science: metals and alloys’, 2007, Berlin, Springer Science & Business Media.
  • J. T. Buswell: ‘Vacancy damage in heavy ion and neutron-irradiated tungsten’, Philos. Mag., Aug. 1970, 22, 787–802. doi: 10.1080/14786437008220947
  • B. L. Eyre and R. Bullough: ‘On the formation of interstitial loops in b.c.c. metals’, Philos. Mag., Jul. 1965, 12, 31–39. doi: 10.1080/14786436508224943
  • W. Jäger and M. Wilkens: ‘Formation of vacancy-type dislocation loops in tungsten bombarded by 60 keV Au ions’, Phys. Status Solidi (a), 1975, 32, (1), 89–100. doi: 10.1002/pssa.2210320109
  • F. Häussermann, M. Rühle, and M. Wilkens: ‘Black-white contrast figures from small dislocation loops II. Application of the first order solution to small loops in ion-irradiated tungsten foils’, Phys. Status Solidi (b), Apr. 1972, 50, 445–457. doi: 10.1002/pssb.2220500204
  • A. Xu, C. Beck, D. E. J. Armstrong, K. Rajan, G. D. W. Smith, P. A. J. Bagot, and S. G. Roberts: ‘Ion-irradiation-induced clustering in W–Re and W–Re–Os alloys: a comparative study using atom probe tomography and nanoindentation measurements’, Acta Mater., Apr. 2015, 87, 121–127. doi: 10.1016/j.actamat.2014.12.049
  • D. E. J. Armstrong, X. Yi, E. A. Marquis, and S. G. Roberts: ‘Hardening of self ion implanted tungsten and tungsten 5-wt% rhenium’, J. Nucl. Mater., Jan. 2013, 432, 428–436. doi: 10.1016/j.jnucmat.2012.07.044
  • C. D. Hardie, S. G. Roberts, and A. J. Bushby: ‘Understanding the effects of ion irradiation using nanoindentation techniques’, J. Nucl. Mater., Dec. 2014, 462, 391–401. doi: 10.1016/j.jnucmat.2014.11.066
  • D. E. J. Armstrong, A. J. Wilkinson, and S. G. Roberts: ‘Mechanical properties of ion-implanted tungsten-5 wt% tantalum’, Phys. Scr., Dec. 2011, T145, 014076. doi: 10.1088/0031-8949/2011/T145/014076
  • J. Gibson, D. Armstrong, and S. Roberts: ‘The micro-mechanical properties of ion irradiated tungsten’, Phys. Scr., Apr. 2014, T159, 014056. doi: 10.1088/0031-8949/2014/T159/014056
  • W. D. Nix and H. Gao: ‘Indentation size effects in crystalline materials: a law for strain gradient plasticity’, J. Mech. Phys. Solids, Mar. 1998, 46, 411–425. doi: 10.1016/S0022-5096(97)00086-0
  • P. Hosemann, D. Kiener, Y. Wang, and S. A. Maloy: ‘Issues to consider using nano indentation on shallow ion beam irradiated materials’, Journal of Nuclear Materials, Jun. 2012, 425, 136–139. doi: 10.1016/j.jnucmat.2011.11.070
  • M. J. Baldwin and R. P. Doerner: ‘Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades’, J. Nucl. Mater., Sep. 2010, 404, 165–173. doi: 10.1016/j.jnucmat.2010.06.034
  • C. S. Becquart and C. Domain: ‘A density functional theory assessment of the clustering behaviour of He and H in tungsten’, J. Nucl. Mater., Apr. 2009, 386–388, 109–111. doi: 10.1016/j.jnucmat.2008.12.085
  • S. Takamura, N. Ohno, D. Nishijima, and S. Kajita: ‘Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation’, Plasma Fusion Res., Dec. 2006, 1, 051–051. doi: 10.1585/pfr.1.051
  • T. J. Petty, M. J. Baldwin, M. I. Hasan, R. P. Doerner, and J. W. Bradley: ‘Tungsten ‘fuzz’ growth re-examined: the dependence on ion fluence in non-erosive and erosive helium plasma’, Nucl. Fusion, Sep. 2015, 55, 093033. doi: 10.1088/0029-5515/55/9/093033
  • M. Miyamoto, T. Watanabe, H. Nagashima, D. Nishijima, R. P. Doerner, S. I. Krasheninnikov, A. Sagara, and N. Yoshida: ‘In situ transmission electron microscope observation of the formation of fuzzy structures on tungsten’, Phys. Scr., Apr. 2014, T159, 014028. doi: 10.1088/0031-8949/2014/T159/014028
  • F. Sefta, K. D. Hammond, N. Juslin, and B. D. Wirth: ‘Tungsten surface evolution by helium bubble nucleation, growth and rupture’, Nucl. Fusion, Jul. 2013, 53, 073015.
  • D. Nishijima, M. J. Baldwin, R. P. Doerner, and J. H. Yu: ‘Sputtering properties of tungsten ‘fuzzy’ surfaces’, J. Nucl. Mater., Aug. 2011, 415, S96–S99. doi: 10.1016/j.jnucmat.2010.12.017
  • F. Hofmann, D. Nguyen-Manh, M. R. Gilbert, C. E. Beck, J. K. Eliason, A. A. Maznev, W. Liu, D. E. J. Armstrong, K. A. Nelson, and S. L. Dudarev: ‘Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling’, Acta Mater., May 2015, 89, 352–363. doi: 10.1016/j.actamat.2015.01.055
  • D. E. J. Armstrong, P. D. Edmondson, and S. G. Roberts: ‘Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten’, Appl. Phys. Lett., 2013, 102, (25), 251901. doi: 10.1063/1.4811825
  • J. S. K. Gibson: ‘Fusion power (PhD thesis, small)’, PhD thesis, 2015, Oxford, University of Oxford.
  • S. Zinkle and N. Ghoniem: ‘Operating temperature windows for fusion reactor structural materials’, Fusion Eng. Design, Nov. 2000, 51–52, 55–71. doi: 10.1016/S0920-3796(00)00320-3
  • A. Giannattasio, Z. Yao, E. Tarleton, and S. G. Roberts: ‘Brittle-ductile transitions in polycrystalline tungsten’, Philos. Mag., 2010, 90, (30), 3947–3959. doi: 10.1080/14786435.2010.502145
  • E. Tarleton and S. Roberts: ‘Dislocation dynamic modelling of the brittle-ductile transition in tungsten’, Philos. Mag, November. 2009, 89, (31), 2759–2769.
  • C. D. Hardie and S. G. Roberts: ‘Nanoindentation of model Fe-Cr alloys with self-ion irradiation’, J. Nucl. Mater., Feb. 2013, 433, 174–179. doi: 10.1016/j.jnucmat.2012.09.003
  • J.-C. He, A. Hasegawa, M. Fujiwara, M. Satou, T. Shishido, and K. Abe: ‘Fabrication and characterization of W–Re–Os alloys for studying transmutation effects of W in fusion reactors’, Mater. Trans., Jun. 2004, 45, 2657–2660. doi: 10.2320/matertrans.45.2657
  • M. R. Gilbert, J. Marian, and J.-C. Sublet: ‘Energy spectra of primary knock-on atoms under neutron irradiation’, J. Nucl. Mater., Dec. 2015, 467, 121–134. doi: 10.1016/j.jnucmat.2015.09.023