319
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Tensile elongation of lean-alloy austenitic stainless steels: transformation-induced plasticity versus planar glide

, , & ORCID Icon
Pages 1224-1230 | Received 19 Oct 2016, Accepted 22 Dec 2016, Published online: 12 Jan 2017

References

  • Rémy L, Pineau A, Thomas B. Temperature dependence of stacking fault energy in close-packed metals and alloys. Mater Sci Eng. 1978;36:47–63. doi: 10.1016/0025-5416(78)90194-5
  • Kestenbach H-J. The effect of applied stress on partial dislocation separation and dislocation substructure in austenitic stainless steel. Philos Mag. 1977;36:1509–1515. doi: 10.1080/14786437708238531
  • Breedis J.F. Influence of dislocation substructure on the martensitic transformation in stainless steel. Acta Metall. 1965;13:239–250. doi: 10.1016/0001-6160(65)90201-4
  • Abrassart F. Stress-induced γ → α martensitic transformation in two carbon stainless steels. Application to trip steels. Metall Trans. 1973;4:2205–2216. doi: 10.1007/BF02643289
  • Pozuelo M, Wittig JE, Jiménez JA, et al. Enhanced mechanical properties of a novel high-nitrogen Cr– Mn–Ni–Si austenitic stainless steel via TWIP/TRIP effects. Metall Mater Trans A. 2009;40:1826–1834. doi: 10.1007/s11661-009-9863-8
  • Vogt JB, Magnin T, Foct J. Effective stresses and microstructure in cyclically deformed 316l austenitic stainless steel: effect of temperature and nitrogen content. Fatigue Fract Eng Mater Struct. 1993;16:555–564. doi: 10.1111/j.1460-2695.1993.tb00766.x
  • Mola J, Wendler M, Weiß A, et al. Segregation-induced enhancement of low-temperature tensile ductility in a cast high-nitrogen austenitic stainless steel exhibiting deformation-induced α′ martensite formation. Metall Mater Trans A. 2015;46:1450–1454. doi: 10.1007/s11661-015-2782-y
  • Rahimi R, Ullrich C, Klemm V, et al. Influence of Al on the temperature dependence of strain hardening behavior and glide planarity in Fe–Cr–Ni–Mn–C austenitic stainless steels. Mater Sci Eng A. 2016;649:301–312. doi: 10.1016/j.msea.2015.10.005
  • Rahimi R, Ullrich C, Rafaja D, Biermann H, Mola J. Microstructural evolution of an Al-alloyed duplex stainless steel during tensile deformation between 77 K and 473 K (−196°C and 200°C). Metall Mater Trans A. 2016;47:2705–2716. doi: 10.1007/s11661-016-3438-2
  • Allain S, Chateau J-P, Bouaziz O, Migot S, Guelton N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A. 2004;387–389:158–162. doi: 10.1016/j.msea.2004.01.059
  • Weidner A, Martin S, Klemm V, et al. Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging. Scr Mater. 2011;64:513–516. doi: 10.1016/j.scriptamat.2010.11.028
  • Biermann H, Solarek J, Weidner A. SEM investigation of high-alloyed austenitic stainless cast steels with varying austenite stability at room temperature and 100°C. Steel Res Int. 2012;83:512–520. doi: 10.1002/srin.201100293
  • Nikulin I, Sawaguchi T, Tsuzaki K. Effect of alloying composition on low-cycle fatigue properties and microstructure of Fe–30Mn–(6−x)Si–xAl TRIP/TWIP alloys. Mater Sci Eng A. 2013;587:192–200. doi: 10.1016/j.msea.2013.08.061
  • Hamada AS, Karjalainen LP, Misra RDK, et al. Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels. Mater Sci Eng A. 2013;559:336–344. doi: 10.1016/j.msea.2012.08.108
  • Jahn A, Kovalev A, Weiß A, et al. Temperature depending influence of the martensite formation on the mechanical properties of high-alloyed Cr–Mn–Ni as-cast steels. Steel Res Int. 2011;82:39–44. doi: 10.1002/srin.201000228
  • Kovalev A, Jahn A, Weiß A, et al. Characterization of the TRIP/TWIP effect in austenitic stainless steels using stress-temperature-transformation (STT) and deformation-temperature-transformation (DTT) diagrams. Steel Res Int. 2011;82:45–50. doi: 10.1002/srin.201000245
  • Kovalev A, Jahn A, Weiß A, et al. Stress-temperature-transformation and deformation-temperature- transformation diagrams for an austenitic CrMnNi as-cast steel. Steel Res Int. 2011;82:1101–1107. doi: 10.1002/srin.201100065
  • Kovalev A, Jahn A, Weiß A, et al. STT and DTT diagrams of austenitic Cr–Mn–Ni as-cast steels and crucial thermodynamic aspects of γ → α′ transformation. Steel Res Int. 2012;83:576–583. doi: 10.1002/srin.201100267
  • Wendler M, Weiß A, Krüger L, et al. Effect of manganese on microstructure and mechanical properties of cast high alloyed CrMnNi-N steels. Adv Eng Mater. 2013;15:558–565. doi: 10.1002/adem.201200318
  • Hamada AS, Karjalainen LP, Somani MC. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels. Mater Sci Eng A. 2007;467:114–124. doi: 10.1016/j.msea.2007.02.074
  • Curtze S, Kuokkala V-T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58:5129–5141. doi: 10.1016/j.actamat.2010.05.049
  • Grässel O, Krüger L, Frommeyer G, et al. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development – properties – application. Int J Plast. 2000;16:1391–1409. doi: 10.1016/S0749-6419(00)00015-2
  • Hauser M, Wendler M, Fabrichnaya O, et al. Anomalous stabilization of austenitic stainless steels at cryogenic temperatures. Mater Sci Eng A. 2016;675:415–420. doi: 10.1016/j.msea.2016.08.080
  • Bhadeshia HKDH. TRIP-assisted steels? ISIJ Int. 2002;42:1059–1060. doi: 10.2355/isijinternational.42.1059
  • Weidner A, Segel C, Biermann H. Magnitude of shear of deformation-induced α′-martensite in high-alloy metastable steel. Mater Lett. 2015;143:155–158. doi: 10.1016/j.matlet.2014.12.098
  • Huang Q, Schröder C, Biermann H, et al. Influence of martensite fraction on tensile properties of quenched and partitioned (Q&P) martensitic stainless steels. Steel Res Int. 2016;87:1082–1094. doi: 10.1002/srin.201500472
  • Müller A, Segel C, Linderov M, et al. The Portevin–Le châtelier effect in a metastable austenitic stainless steel. Metall Mater Trans A. 2015;2:1–16.
  • Chen L., Kim HS, Kim SK, et al. Localized deformation due to Portevin-lechatelier effect in 18Mn-0.6C TWIP austenitic steel. ISIJ Int. 2007;47:1804–1812. doi: 10.2355/isijinternational.47.1804
  • Martin M, Weber S, Theisen W, et al. Development of a stable high-aluminum austenitic stainless steel for hydrogen applications. Int J Hydrog Energy. 2013;38:5989–6001. doi: 10.1016/j.ijhydene.2013.02.127
  • Byun TS. Hashimoto N, Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 2004;52:3889–3899. doi: 10.1016/j.actamat.2004.05.003
  • Saleh AA, Pereloma EV, Gazder AA. Microstructure and texture evolution in a twinning-induced-plasticity steel during uniaxial tension. Acta Mater. 2013;61:2671–2691. doi: 10.1016/j.actamat.2013.01.051
  • Suwas S, Ray RK. Crystallographic texture of materials. London: Springer London; 2014.
  • Hwang JK, Yi IC, Son IH, et al. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing. Mater Sci Eng A. 2015;644:41–52. doi: 10.1016/j.msea.2015.07.034
  • Saleh AA, Pereloma EV, Gazder AA. Self-consistent modeling of texture evolution in TWIP steel during uniaxial tension. Steel Res Int. 2014;85:1120–1127. doi: 10.1002/srin.201300167
  • Yan K, Carr DG, Callaghan MD, et al. Deformation mechanisms of twinning-induced plasticity steels: in situ synchrotron characterization and modeling. Scr Mater. 2010;62:246–249. doi: 10.1016/j.scriptamat.2009.11.008
  • Bogers AJ, Burgers WG. Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice. Acta Metall. 1964;12:255–261. doi: 10.1016/0001-6160(64)90194-4
  • Olson GB, Cohen M. A general mechanism of martensitic nucleation: part II. FCC → BCC and other martensitic transformations. Metall Trans A. 1976;7:1905–1914.
  • Rhodes CG, Thompson AW. The composition dependence of stacking fault energy in austenitic stainless steels. Metall Trans A. 1977;8:1901–1906. doi: 10.1007/BF02646563
  • Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Mater Sci Eng R Rep. 2009;65:39–104. doi: 10.1016/j.mser.2009.03.001
  • Pierce DT, Jiménez JA, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn– (Al–Si) steels investigated by experiment and theory. Acta Mater. 2014;68:238–253. doi: 10.1016/j.actamat.2014.01.001
  • Martin S, Ullrich C, Šimek D, et al. Stacking fault model of ε-martensite and its DIFFaX implementation. J Appl Crystallogr. 2011;44:779–787. doi: 10.1107/S0021889811019558
  • Martin S, Wolf S, Martin U, et al. Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature. Metall Mater Trans A. 2016;47:49–58. doi: 10.1007/s11661-014-2684-4
  • Shin HC, Ha TK, Chang YW. Kinetics of deformation induced martensitic transformation in a 304 stainless steel. Scr Mater. 2001;45:823–829. doi: 10.1016/S1359-6462(01)01101-0
  • De AK, Murdock DC, Mataya MC, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by x-ray diffraction. Scr Mater. 2004;50:1445–1449. doi: 10.1016/j.scriptamat.2004.03.011
  • Tamura I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met Sci. 1982;16:245–253. doi: 10.1179/030634582790427316

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.