9,433
Views
130
CrossRef citations to date
0
Altmetric
Original Articles

Recent progress in microstructural hydrogen mapping in steels: quantification, kinetic analysis, and multi-scale characterisation

ORCID Icon, , , , ORCID Icon, , & show all
Pages 1481-1496 | Received 05 Dec 2016, Accepted 21 Feb 2017, Published online: 07 Mar 2017

References

  • Aasaoka T, Lapasset G, Aucouturier M, et al. Observation of hydrogen trapping in Fe-0.15 Wt% Ti alloy by high resolution autoradiography. Corrosion. 1978;34:39–47. doi: 10.5006/0010-9312-34.2.39
  • Hanada H, Otsuka T, Nakashima H, et al. Profiling of hydrogen accumulation in a tempered martensite microstructure by means of tritium autoradiography. Scr Mater. 2005;53:1279–1284. doi: 10.1016/j.scriptamat.2005.07.031
  • Otsuka T, Tanabe T. Hydrogen diffusion and trapping process around MnS precipitates in αFe examined by tritium autoradiography. J Alloy Compd. 2007;446–447:655–659. doi: 10.1016/j.jallcom.2007.02.005
  • Razzini G, Maffi S, Mussati G, et al. The scanning photoelectrochemical microscopy of diffusing hydrogen into metals. Corros Sci. 1995;37:1131–1141. doi: 10.1016/0010-938X(95)00020-K
  • Razzini G, Cabrini M, Maffi S, et al. Photoelectrochemical visualization in real-time of hydrogen distribution in plastic regions of low-carbon steel. Corros Sci. 1999;41:203–208. doi: 10.1016/S0010-938X(98)00140-1
  • Guedes FMF, Maffi S, Razzini G, et al. Scanning photoelectrochemical analysis of hydrogen permeation on ASTM A516 grade60 steel welded joints in a H2S containing solution. Corros Sci. 2003;45:2129–2142. doi: 10.1016/S0010-938X(03)00033-7
  • Fushimi K, Lill KA, Habazaki H. Heterogeneous hydrogen evolution on corroding Fe–3 at.% Si surface observed by scanning electrochemical microscopy. Electrochim Acta. 2007;52:4246–4253. doi: 10.1016/j.electacta.2006.12.006
  • Schaller RF, Thomas S, Birbilis N, et al. Spatially resolved mapping of the relative concentration of dissolved hydrogen using the scanning electrochemical microscope. Electrochem Commun. 2015;51:54–58. doi: 10.1016/j.elecom.2014.12.004
  • Takai K, Seki J, Yamauchi G, et al. Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry, materials transactions. JIM. 1995;36:1134–1139.
  • Awane T, Fukushima Y, Matsuo T, et al. Highly sensitive detection of net hydrogen charged into austenitic stainless steel with secondary ion mass spectrometry. Anal Chem. 2011;83:2667–2676. doi: 10.1021/ac103100b
  • Tarzimoghadam Z, Rohwerder M, Merzlikin SV, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718. Acta Mater. 2016;109:69–81. doi: 10.1016/j.actamat.2016.02.053
  • Sobol O, Holzlechner G, Nolze G, et al. Time-of-Flight secondary Ion mass spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel micro-structure. Mater Sci Eng: A. 2016;676:271–277. doi: 10.1016/j.msea.2016.08.107
  • Schober T, Dieker C. Observation of local hydrogen on nickel surfaces. Metall Trans A. 1983;14:2440–2442. doi: 10.1007/BF02663321
  • Yao J, Cahoon JR. The use of silver decoration technique in the study of hydrogen transport in metallic materials. Metall T A. 1990;21:603–608. doi: 10.1007/BF02671932
  • Sundararajan T, Akiyama E, Tsuzaki K. Hydrogen mapping across a crevice: effect of applied potential. Scr Mater. 2005;53:1219–1223. doi: 10.1016/j.scriptamat.2005.08.016
  • Koyama M, Tasan CC, Nagashima T, et al. Hydrogen-assisted damage in austenite/martensite dual-phase steel. Philos Mag Lett. 2016;96:9–18. doi: 10.1080/09500839.2015.1130275
  • Nagashima T, Koyama M, Bashir A, et al. Interfacial hydrogen localization in austenite/martensite dual-phase steel visualized through optimized silver decoration and scanning Kelvin probe force microscopy. Mater Corros. 2016.
  • Luppo MI, Ovejero-Garcia J. The influence of microstructure on the trapping and diffusion of hydrogen in a low carbon steel. Corros Sci. 1991;32:1125–1136. doi: 10.1016/0010-938X(91)90097-9
  • Ovejero-García J. Hydrogen microprint technique in the study of hydrogen in steels. J Mater Sci. 1985;20:2623–2629. DOI: 10.1007/BF00556094.
  • Ronevich JA, Speer JG, Krauss G, et al. Improvement of the hydrogen microprint technique on AHSS steels. Metallogr Microst Anal. 2012;1:79–84. doi: 10.1007/s13632-012-0015-y
  • Ichitani K, Kuramoto S, Kanno M. Quantitative evaluation of detection efficiency of the hydrogen microprint technique applied to steel. Corros Sci. 2003;45:1227–1241. doi: 10.1016/S0010-938X(02)00218-4
  • Rohwerder M, Turcu F. High-resolution Kelvin probe microscopy in corrosion science: scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP). Electrochim Acta. 2007;53:290–299. doi: 10.1016/j.electacta.2007.03.016
  • Senöz C, Evers S, Stratmann M, et al. Scanning Kelvin probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution. Electrochem Commun. 2011;13:1542–1545. doi: 10.1016/j.elecom.2011.10.014
  • Evers S, Senöz C, Rohwerder M. Hydrogen detection in metals: a review and introduction of a Kelvin probe approach. Sci Technol Adv Mater. 2013;14:014201. doi: 10.1088/1468-6996/14/1/014201
  • Koyama M, Bashir A, Rohwerder M, et al. Spatially and kinetically resolved mapping of hydrogen in a twinning-induced plasticity steel by use of scanning Kelvin probe force microscopy. J Electrochem Soc. 2015;162:C638–C647. doi: 10.1149/2.0131512jes
  • Wang G, Yan Y, Yang X, et al. Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy. Electrochem Commun. 2013;35:100–103. doi: 10.1016/j.elecom.2013.08.006
  • Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr Mater. 2010;63:261–264. doi: 10.1016/j.scriptamat.2010.03.012
  • Takahashi J, Kawakami K, Tarui T. Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography. Scr Mater. 2012;67:213–216. doi: 10.1016/j.scriptamat.2012.04.022
  • Haley D, Merzlikin SV, Choi P, et al. Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. Int J Hydrogen Energy. 2014;39:12221–12229. doi: 10.1016/j.ijhydene.2014.05.169
  • Gemma R, Al-Kassab T, Kirchheim R, et al. Visualization of deuterium dead layer by atom probe tomography. Scr Mater. 2012;67:903–906. doi: 10.1016/j.scriptamat.2012.08.025
  • Révay Z, Belgya T, Szentmiklósi L, et al. In situ determination of hydrogen inside a catalytic reactor using prompt γ activation analysis. Anal Chem. 2008;80:6066–6071. doi: 10.1021/ac800882k
  • Reichart P, Dollinger G, Bergmaier A, et al. 3D hydrogen microscopy with sub-ppm detection limit. Nucl Instrum Methods B. 2004;219-220:980–987. doi: 10.1016/j.nimb.2004.01.200
  • Peeper K, Moser M, Reichart P, et al. 3D-microscopy of hydrogen in tungsten. J Nucl Mater. 2013;438(Supplement):S887–S890. doi: 10.1016/j.jnucmat.2013.01.192
  • Wagner S, Moser M, Greubel C, et al. Hydrogen microscopy – distribution of hydrogen in buckled niobium hydrogen thin films. Int J Hydrogen Energy. 2013;38:13822–13830. doi: 10.1016/j.ijhydene.2013.08.006
  • Manke I, Markötter H, Tötzke C, et al. Investigation of energy-relevant materials with synchrotron X-rays and neutrons. Adv Eng Mater. 2011;13:712–729. doi: 10.1002/adem.201000284
  • Kardjilov N, Manke I, Hilger A, et al. Neutron imaging in materials science. Mater Today. 2011;14:248–256. doi: 10.1016/S1369-7021(11)70139-0
  • Beyer K, Kannengiesser T, Griesche A, et al. Neutron radiography study of hydrogen desorption in technical iron. J Mater Sci. 2011;46:5171–0. doi: 10.1007/s10853-011-5450-7
  • Griesche A, Dabah E, Kannengiesser T, et al. Three-dimensional imaging of hydrogen blister in iron with neutron tomography. Acta Mater. 2014;78:14–22. doi: 10.1016/j.actamat.2014.06.034
  • Griesche A, Dabah E, Kannengiesser T, et al. Measuring hydrogen distributions in iron and steel using neutrons. Phys Procedia. 2015;69:445–450. doi: 10.1016/j.phpro.2015.07.062
  • Choo WY, Lee JY. Thermal analysis of trapped hydrogen in pure iron. Metall Trans A. 1982;13:135–140. doi: 10.1007/BF02642424
  • Wei FG, Hara T, Tsuzaki K. Precise determination of the activation energy for desorption of hydrogen in two Ti-added steels by a single thermal-desorption spectrum. Metall Mater Trans B. 2004;35:587–597. doi: 10.1007/s11663-004-0057-x
  • Koyama M, Springer H, Merzlikin SV, et al. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. Int J Hydrogen Energy. 2014;39:4634–4646. doi: 10.1016/j.ijhydene.2013.12.171
  • Ryu JH, Kim SK, Lee CS, et al. Effect of aluminium on hydrogen-induced fracture behaviour in austenitic Fe–Mn–C steel. Proc R Soc A – Math Phys. 2013;469.
  • Enos DG, Scully JR. A critical-strain criterion for hydrogen embrittlement of cold-drawn, ultrafine pearlitic steel. Metall Mater Trans A. 2002;33:1151–1166. doi: 10.1007/s11661-002-0217-z
  • Takai K, Watanuki R. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels. ISIJ Int. 2003;43:520–526. doi: 10.2355/isijinternational.43.520
  • Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros Sci. 2007;49:4081–4097. doi: 10.1016/j.corsci.2007.03.038
  • Takagi S, Toji Y, Yoshino M, et al. Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles. ISIJ Int. 2012;52:316–322. doi: 10.2355/isijinternational.52.316
  • Barnoush A, Vehoff H. Recent developments in the study of hydrogen embrittlement: hydrogen effect on dislocation nucleation. Acta Mater. 2010;58:5274–5285. doi: 10.1016/j.actamat.2010.05.057
  • Yamabe J, Awane T, Matsuoka S. Elucidating the hydrogen-entry-obstruction mechanism of a newly developed aluminum-based coating in high-pressure gaseous hydrogen. Int J Hydrogen Energy. 2015;40:10329–10339. doi: 10.1016/j.ijhydene.2015.06.023
  • Schaller RF, Scully JR. Spatial determination of diffusible hydrogen concentrations proximate to pits in a Fe–Cr–Ni–Mo steel using the scanning Kelvin probe. Electrochem Commun. 2016;63:5–9. doi: 10.1016/j.elecom.2015.12.002
  • Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. Acta Mater. 2014;79:93–107. doi: 10.1016/j.actamat.2014.07.008
  • Sasaki D, Koyama M, Hamada S, et al. Tensile properties of precracked tempered martensitic steel specimens tested at ultralow strain rates in high-pressure hydrogen atmosphere. Philos Mag Lett. 2015;95:260–268. doi: 10.1080/09500839.2015.1049574
  • Nagumo M, Nakamura M, Takai K. Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metall Mater Trans A. 2001;32:339–347. doi: 10.1007/s11661-001-0265-9
  • Wang M, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation. Corros Sci. 2006;48:2189–2202. doi: 10.1016/j.corsci.2005.07.010
  • Kim JS, Lee YH, Lee DL, et al. Microstructural influences on hydrogen delayed fracture of high strength steels. Mater Sci Eng A. 2009;505:105–110. doi: 10.1016/j.msea.2008.11.040
  • Koyama M, Akiyama E, Tsuzaki K. Hydrogen-induced delayed fracture of a Fe–22Mn–0.6 C steel pre-strained at different strain rates. Scr Mater. 2012;66:947–950. doi: 10.1016/j.scriptamat.2012.02.040
  • Lufrano J, Sofronis P. Enhanced hydrogen concentrations ahead of rounded notches and cracks—competition between plastic strain and hydrostatic stress. Acta Mater. 1998;46:1519–1526. doi: 10.1016/S1359-6454(97)00364-9
  • Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel. Mater Sci Eng A. 2005;398:37–46. doi: 10.1016/j.msea.2005.03.008
  • Ayas C, Deshpande VS, Fleck NA. A fracture criterion for the notch strength of high strength steels in the presence of hydrogen. J Mech Phys Solids. 2014;63:80–93. doi: 10.1016/j.jmps.2013.10.002
  • Wei FG, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall Mater Trans A. 2006;37:331–353. doi: 10.1007/s11661-006-0004-3
  • Abe N, Suzuki H, Takai K, et al. Identification of hydrogen trapping sites, binding energies, and occupation ratios at vacancies, dislocations and grain boundaries in iron of varying carbon content. Materials Science and Technology Conference and Exhibition 2011, MS and T'11; 2011. p. 1277–1284.
  • Koyama M, Tsuzaki K. Ε→γ reverse transformation-induced hydrogen desorption and Mn effect on hydrogen uptake in Fe–Mn binary alloys. ISIJ Int. 2015;55:2269–2271. doi: 10.2355/isijinternational.ISIJINT-2015-215
  • Magee CW, Botnick EM. Hydrogen depth profiling using SIMS—problems and their solutions. J Vac Sci Technol. 1981;19:47–52. doi: 10.1116/1.571015
  • Nishimoto A, Koyama M, Yamato S, et al. Detection of charged hydrogen in ferritic steel through cryogenic secondary ion mass spectrometry. ISIJ Int. 2015;55:335–337. doi: 10.2355/isijinternational.55.335
  • Yamabe J, Matsuoka S, Murakami Y. Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment. Int J Hydrogen Energy. 2013;38:10141–10154. doi: 10.1016/j.ijhydene.2013.05.152
  • Evers S, Rohwerder M. The hydrogen electrode in the “dry”: A Kelvin probe approach to measuring hydrogen in metals. Electrochem Commun. 2012;24:85–88. doi: 10.1016/j.elecom.2012.08.019
  • Evers S, Senöz C, Rohwerder M. Spatially resolved high sensitive measurement of hydrogen permeation by scanning Kelvin probe microscopy. Electrochim Acta. 2013;110:534–538. doi: 10.1016/j.electacta.2013.04.171
  • Gault B, Moody MP, Cairney JM, et al. Atom probe microscopy. Springer Science & Business Media; 2012.
  • Hono K, Raabe D, Ringer SP, et al. Atom probe tomography of metallic nanostructures. MRS Bull. 2016;41:23–29. doi: 10.1557/mrs.2015.314
  • Marquis E, Choi PP, Danoix F, et al. New insights into the atomic-scale structures and behavior of steels. Microsc Today. 2012;20:44–48. doi: 10.1017/S1551929512000387
  • Gault B, Loi ST, Araullo-Peters VJ, et al. Dynamic reconstruction for atom probe tomography. Ultramicroscopy. 2011;111:1619–1624. doi: 10.1016/j.ultramic.2011.08.005
  • Asahi H, Hirakami D, Yamasaki S. Hydrogen trapping behavior in vanadium-added steel. ISIJ Int. 2003;43:527–533. doi: 10.2355/isijinternational.43.527
  • Koyama M, Yamasaki D, Nagashima T, et al. In situ observations of silver-decoration evolution under hydrogen permeation: effects of grain boundary misorientation on hydrogen flux in pure iron. Scr Mater. 2017;129:48–51. doi: 10.1016/j.scriptamat.2016.10.027
  • Nagao A, Kuramoto S, Ichitani K, et al. Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping. Scr Mater. 2001;45:1227–1232. doi: 10.1016/S1359-6462(01)01154-X
  • Momotani Y, Shibata A, Terada D, et al. Hydrogen embrittlement behavior at different strain rates in low-carbon martensitic steel. Mater Today: Proc. 2015;2:S735–S738. doi: 10.1016/j.matpr.2015.07.387
  • Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003;51:1789–1799. doi: 10.1016/S1359-6454(02)00577-3
  • Morsdorf L, Tasan CC, Ponge D, et al. 3D structural and atomic-scale analysis of lath martensite: effect of the transformation sequence. Acta Mater. 2015;95:366–377. doi: 10.1016/j.actamat.2015.05.023
  • Koyama M, Abe Y, Saito K, et al. Martensitic transformation-induced hydrogen desorption characterized by utilizing cryogenic thermal desorption spectroscopy during cooling. Scr Mater. 2016;122:50–53. doi: 10.1016/j.scriptamat.2016.05.012