2,041
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Simulating novel gas turbine conditions for materials assessment: cascade design and operation

ORCID Icon, ORCID Icon, &
Pages 1090-1099 | Received 21 Sep 2016, Accepted 21 Mar 2017, Published online: 26 Apr 2017

References

  • European Commission: ‘Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Roadmap for Moving to a Competitive Low Carbon Economy in 2050’, Report: COM/2011/0112 final, European Commission, 2011.
  • P. Dechamps: ‘The EU research strategy towards zero emission fossil fuel power plant’ in ‘Materials for power engineering 2006’, (eds. J. Lecomte-Beckers et al.), Part 1, 25–36; 2006, Jülich, Forschungszentrum Jülich.
  • N. J. Simms, J. Sumner, T. Hussain and J. E. Oakey: ‘Fireside issues in advanced power generation systems’, Mater. Sci. Technol., 2013, 29 (7), 804–812. doi: 10.1179/1743284712Y.0000000133
  • B. Waschbüsch and H-P. Bossmann: ‘Influence of the salt composition on the hot corrosion behaviour of gas turbine materials’ in ‘Lifetime modelling of high temperature corrosion processes’, (eds. M. Schütze et al.), EFC No. 34, 261–273; 2001, Houston, TX, Nace.
  • GE Power Generation: https://powergen.gepower.com/products/heavy-duty-gas-turbines.html (accessed 26/2/2017).
  • Siemens Gas Turbines: http://www.energy.siemens.com/hq/en/fossil-power-generation/gas-turbines/ (accessed 26/2/2017).
  • D. H. Allen, J. E. Oakey and B. Scarlin. ‘The new cost action 522 – power generation in the 21st century: ultra efficient, low emission plant’ in ‘Materials for advanced power engineering 1998’, (eds. J. Lecomte-Beckers et al.), 1825–1838; 1998, Jülich, Forschungszentrum Jülich.
  • S. T. Scheirer and R. Viswanathan: ‘Evolution of Hot Section Materials Technology’, Proc. ASM Materials Solution Conf., St Louis, MO, USA, October 2000, ASM International.
  • T. Schulenberg: ‘New development in land-based gas turbine technology’ in ‘Materials for advanced power engineering 1998’, (eds. J. Lecomte-Beckers et al.), 1825–1838; 1998, Jülich, Forschungszentrum Jülich.
  • N. J. Simms, D. W. Bale, D. Baxter and J. E. Oakey: ‘Environmental degradation of gas turbine coatings: towards standardised testing and databases’ in ‘Materials for advanced power engineering 2002’, (eds. J. Locomte-Beckers et al.), 73–88; 2002, Jülich, Forschungszentrum Jülich.
  • C. T. Sims, N. S. Stoloff, and W. C. Hagel: ‘Superalloys II’; 1987, New York, NY, Wiley.
  • R. C. Reed: ‘The superalloys – fundamentals and applications’; 2006, Cambridge, Cambridge University Press.
  • J. R. Nicholls and R. Wing: ‘Advances in coating systems for utility gas turbines’ in ‘Materials for advanced power engineering 2002’, (eds. J. Locomte-Beckers et al.), 57–71; 2002, Jülich, Forschungszentrum Jülich.
  • R. Vassen, M. O. Jarligo, T. Steinke, D. E. Mack and D. Stöver: ‘Overview on advanced thermal barrier coatings’, Surf. Coat. Technol., 2010, 205, 938–942. doi: 10.1016/j.surfcoat.2010.08.151
  • H. Singh, B. S. Sidhu, D. Puri and S. Prakash: ‘Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistance coatings – a review’, Mater. Corros., 2007, 58, (2), 92–102. doi: 10.1002/maco.200603985
  • N. Birks, G. H. Meier and F. S. Pettit: ‘Introduction to the high-temperature oxidation of metals’, 2nd edn; 2006, Cambridge, Cambridge University Press.
  • O. Maurstad: ‘An overview of coal based integrated gasification combined cycle (IGCC) technology’, Technical publication, MIT LFEE 2005-002 WP; 2005, MA, USA, Massachusetts Institute of Technology.
  • C. C. Cormos: ‘Assessment of hydrogen and electricity co-production schemes based on gasification process with carbon capture and storage’, Int J Hydrogen Energy, 2009, 34, 6065–6077. doi: 10.1016/j.ijhydene.2009.05.054
  • H2-IGCC project homepage: http://www.h2-igcc.eu/ (accessed 11th January 2017).
  • J. Sumner, A. Potter, N. J. Simms and J. E. Oakey: ‘Hot corrosion resistance of gas turbine materials in combusted syngas environments’, Mater. High Temp., 2015, 32(1–2), 177–187. doi: 10.1179/0960340914Z.00000000098
  • N.J. Simms, J.R. Nicholls and J.E. Oakey, ‘Materials for solid fuel fired gas turbines: burner rig and laboratory studies’, Mater. Sci. Forum., 2001, 369–372, 833–840. doi: 10.4028/www.scientific.net/MSF.369-372.833
  • J. R. Nicholls and S. R. J. Saunders: ‘Hot-salt corrosion standards, test procedures and performance’, High Temp. Technol., 1989, 7, (4), 170. doi: 10.1080/02619180.1989.11753433
  • J. Sumner, D. E. Mack, F. Cernuschi, W. Stamm, A. Moscatelli, S. Nardone, B. Sarens, N. J. Simms and J. E. Oakey, ‘Advanced Coatings for Novel Combustion Environments in Gas Turbines Fired on H2-Rich Syngas’, in preparation.
  • J. Sumner, A. Encinas-Oropesa, N. J. Simms and J. E. Oakey: ‘High temperature oxidation and corrosion of gas turbine materials in burner rig exposures’, Mater. Sci. Technol., 2013, 29, (7), 813–821. doi: 10.1179/1743284712Y.0000000097
  • A. G. Stamatis: ‘Engine condition monitoring and diagnostics’ in ‘Progress in gas turbine performance’, (ed. E. Benini), 187–212; 2013, Rijeka, Croatia, InTech.