2,494
Views
88
CrossRef citations to date
0
Altmetric
Reviews

Medium-manganese steels processed by austenite-reverted-transformation annealing for automotive applications

Pages 1713-1727 | Received 12 Dec 2016, Accepted 23 Mar 2017, Published online: 12 Apr 2017

References

  • Keeler S, Kimchi M. Advanced high-strength steels application guidelines V5. WorldAutoSteel; 2014.
  • Matlock DK, Speer JG, De Moor E, et al. Recent development advanced high strength sheet steels for automotive applications: an overview. JESTECH. 2012;15:1–12.
  • De Cooman BC, Kwon O, Chin KG. State-of-the-knowledge on TWIP steel. Mater Sci Technol. 2012;28:513–527.
  • Billur E, Altan T. Three generations of advanced high-strength steels for automotive applications, Part I. Stamp J. 2013;Nov/Dec: 16–17.
  • Song W, Prahl U, Bleck W. Steel—ab initio: quantum mechanics guided design of new Fe-based materials. Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME2015), Colorado, USA; 2015 May–June; p. 47–54.
  • Song W, Ingendahl T, Bleck W. Control of strain hardening behavior in high-Mn austenitic steels. Acta Metall Sin Engl Lett. 2014;27:546–556.
  • Lan P, Zhang J. Thermophysical properties and solidification defects of Fe–22Mn–0.7C TWIP steel. Steel Res Int. 2016;87:250–261.
  • Miller RL. Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall Trans. 1972;3:905–912.
  • Bleck W. Materials science of steel. Textbook. Aachen: IEHK; 2013.
  • Arlazarov A, Gouné M, Bouaziz O, et al. Evolution of microstructure and mechanical properties of medium Mn steels during double annealing. Mater Sci Eng A. 2012;542:31–39.
  • Wang C, Cao W, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng A. 2013;562:89–95.
  • Zhang R, Cao WQ, Peng ZJ, et al. Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel. Mater Sci Eng A. 2013;583:84–88.
  • Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr Mater. 2010;63:815–818.
  • Kim SJ. Effects of manganese content and heat treatment condition on mechanical properties and microstructures of fine-grained low carbon TRIP-aided steels. Mater Sci Forum. 2010;638–642:3313–3318.
  • Han J, Lee SJ, Jung JG, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Acta Mater. 2014;78:369–377.
  • Zhao X, Shen Y, Qiu L, et al. Effects of intercritical annealing temperature on mechanical properties of Fe–7.9Mn–0.14Si–0.05Al–0.07C steel. Materials. 2014;7:7891–7906.
  • Lee S, De Cooman BC. Effect of the intercritical annealing temperature on the mechanical properties of 10 pct Mn multi-phase steel. Metall Mater Trans A. 2014;45:5009–5016.
  • Suh DW, Ryu JH, Joo MS, et al. Medium-alloy manganese-rich transformation-induced plasticity steels. Metall Mater Trans A. 2013;44:286–293.
  • Furukawa T, Huang H, Matsumura O. Effects of carbon content on mechanical properties of 5% Mn steels exhibiting transformation induced plasticity. Mater Sci Technol. 1994;10:964–970.
  • De Moor E, Matlock DK, Speer JG, et al. Austenite stabilization through manganese enrichment. Scr Mater. 2011;64:185–188.
  • Lee S, De Cooman BC. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metall Mater Trans A. 2014;44:5018–5024.
  • Lee S, De Cooman BC. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int. 2015;86:1170–1178.
  • Han J, Lee SJ, Lee CY, et al. The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Mater Sci Eng A. 2015;633:9–16.
  • Lee S, De Cooman BC. Tensile behavior of intercritically 10 pct Mn multi-phase steel. Metall Mater Trans A. 2014;45:709–716.
  • Lee S, Woo W, De Cooman BC. Analysis of the tensile behavior of 12 pct Mn multi-phase (α+γ) TWIP-TRIP steel by neutron diffraction. Metall Mater Trans A. 2016;47:2125–2140.
  • Latypov MI, Shin S, De Cooman BC, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel. Acta Mater. 2016;108:219–228.
  • He BB, Luo HW, Huang MX. Experimental investigation on a novel medium Mn steel combining transformation- induced plasticity and twinning-induced plasticity effects. Int J Plast. 2016;78:173–186.
  • Furukawa T. Dependence of strength-ductility characteristics on thermal history in low carbon, 5 wt.% Mn steels. Mater Sci Technol. 1989;5(5):465–470.
  • Lee S, Estrin Y, De Cooman BC. Constitutive modeling of the mechanical properties of V-added medium manganese TRIP steel. Metall Mater Trans A. 2013;44:3136–3146.
  • Lee S, Lee K, De Cooman BC. Observation of the TWIP+ TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel. Metall Mater Trans A. 2015;46:2356–2363.
  • Lee S, De Cooman BC. Annealing temperature dependence of the tensile behavior of 10 pct multi-phase TWIP-TRIP steel. Metall Mater Trans A. 2014;45:6039–6052.
  • Lee S, Lee SJ, Kumar SS, et al. Localized deformation in multiphase, ultra-fine-grained 6 pct Mn transformation-induced plasticity steel. Metall Mater Trans A. 2011;42:3638–3651.
  • Dong H, Cao W, Shi J. Formation of an ultrafine-grained austenite-containing microstructure from a cold-rolled medium-manganese steel processed using intercritical annealing. Mater Sci Forum. 2013;762:31–37.
  • Wang C, Shi J, Wang CY, et al. Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing. ISIJ Int. 2011;51:651–656.
  • Luo H, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater. 2011;59:4002–4014.
  • Han J, Lee YK. The effects of the heating rate on the reverse transformation mechanism and phase stability of reverted austenite in medium Mn steels. Acta Mater. 2014;67:354–361.
  • Sun R, Xu W, Wang C, et al. Work hardening behavior of ultrafine grained duplex medium-Mn steels processed by ART-annealing. Steel Res Int. 2012;83(4):316–321.
  • Cao WQ, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing. Mater Sci Eng A. 2011;528:6661–6666.
  • Xu HF, Zhao J, Cao WQ, et al. Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C–5Mn). Mater Sci Eng A. 2012;532:435–442.
  • Xu HF, Zhao J, Cao WQ, et al. Tempering effects on the stability of retained austenite and mechanical properties in a medium manganese steel. ISIJ Int. 2012;52:868–873.
  • Gibbs PJ, De Moor E, Merwin MJ, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A. 2011;42(12):3691–3702.
  • Zhao C, Zhang C, Cao WQ, et al. Variation of microstructure and mechanical properties of medium Mn steels with multiphase microstructure. Mater Sci Technol. 2016;32:63–70.
  • Lee S, Lee K, De Cooman BC. Ultra fine-grained 6wt% manganese TRIP steel. Mater Sci Forum. 2010;654–656:286–289.
  • Lee S-J, Lee S, De Cooman BC. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scr Mater. 2011;64:649–652.
  • Lee S, Lee S-J, De Cooman BC. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scr Mater. 2011;65:225–228.
  • Lee SJ, Lee S, De Cooman BC. Martensite transformation of sub-micron retained austenite in ultra-fine grained manganese transformation-induced plasticity steel. Int J Mater Res. 2013;104:423–429.
  • Han J, Nam J-H, Lee Y-K. The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel. Acta Mater. 2016;113:1–10.
  • Aydin H, Jung IH, Essadiqi E, et al. Twinning and Tripping in 10% Mn steels. Mater Sci Eng A. 2014;591:90–96.
  • Su G, Gao X, Du L, et al. Influence of Mn on the corrosion behaviour of medium manganese steels in a simulated seawater environment. Int J Electrochem Sci. 2016;11:9447–9461.
  • Tsuchiyama T, Inoue T, Tobata J, et al. Microstructure and mechanical properties of a medium manganese steel treated with interrupted quenching and intercritical annealing. Scr Mater. 2016;122:36–39.
  • Lee S, Lee SJ, De Cooman BC. Work hardening behavior of ultrafine-grained Mn transformation-induced plasticity steel. Acta Mater. 2011;59:7546–7553.
  • Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strain of medium Mn transformation-induced plasticity stees. Mater Des. 2015;83:42–48.
  • Watté P, van Humbeeck J, Aernoudt E, et al. Strain ageing in heavily drawn eutectoid steel wires. Scr Mater. 1996;34:89–95.
  • Leslie WC, Keh AS. Aging of flat-rolled steel products as investigated by electron microscopy. Mechanical working of steel II. New York(NY): Gorden and Breach; 1965. p. 337–377.
  • Tsuchida N, Masuda H, Harada Y, et al. Effect of ferrite grain size on tensile deformation behavior of a ferrite-cementite low carbon steel. Mater Sci Eng A. 2008;488:446–452.
  • Kusakin P, Belyakov A, Haase C, et al. Microstructure evolution and strengthening mechanisms of Fe–23Mn– 0.3C–1.5Al TWIP steel during cold rolling. Mater Sci Eng A. 2014;617:52–60.
  • Song W, Zhang W, von Appen J, et al. κ-phase formation in Fe–Mn–Al–C austenitic steels. Steel Res Int. 2015;86:1161–1169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.