151
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Reactive friction-stir processing of nanocomposites: effects of thermal history on microstructure–mechanical property relationships

, &
Pages 1776-1789 | Received 06 Feb 2017, Accepted 03 Apr 2017, Published online: 15 May 2017

References

  • Berbon PB, Bingel WH, Mishra RS, et al. Friction stir processing: a tool to homogenize nanocomposite aluminum alloys. Scr Mater. 2001;44(1):61–66. doi: 10.1016/S1359-6462(00)00578-9
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46(1–2):1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Suryanarayana C, Al-Aqeeli N. Mechanically alloyed nanocomposites. Prog Mater Sci. 2013;58(4):383–502. doi: 10.1016/j.pmatsci.2012.10.001
  • Mishra RS. Preface to the viewpoint set on friction stir processing. Scr Mater. 2008;58(5):325–326. doi: 10.1016/j.scriptamat.2007.10.044
  • Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A. 2003;341(1–2):307–310. doi: 10.1016/S0921-5093(02)00199-5
  • Eskandari H, Taheri R, Khodabakhshi F. Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties. Mater Sci Eng A. 2016;660:84–96. doi: 10.1016/j.msea.2016.02.081
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A. 2015;642:204–214. doi: 10.1016/j.msea.2015.07.001
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50(1–2):1–78. doi: 10.1016/j.mser.2005.07.001
  • Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction-stir welding – process, weldment structure and properties. Prog Mater Sci. 2008;53(6):980–1023. doi: 10.1016/j.pmatsci.2008.05.001
  • You GL, Ho NJ, Kao PW. In-situ formation of Al2O3 nanoparticles during friction stir processing of Al-SiO2 composite. Mater Charact. 2013;80:1–8. doi: 10.1016/j.matchar.2013.03.004
  • Zhang Q, Xiao BL, Wang D, et al. Formation mechanism of in situ Al3Ti in Al matrix during hot pressing and subsequent friction stir processing. Mater Chem Phys. 2011;130(3):1109–1117. doi: 10.1016/j.matchemphys.2011.08.042
  • Zhang Q, Xiao BL, Ma ZY. Mechanically activated effect of friction stir processing in Al–Ti reaction. Mater Chem Phys. 2013;139(2–3):596–602. doi: 10.1016/j.matchemphys.2013.01.062
  • Zhang Q, Xiao BL, Xue P, et al. Microstructural evolution and mechanical properties of ultrafine grained Al3Ti/Al–5.5Cu composites produced via hot pressing and subsequent friction stir processing. Mater Chem Phys. 2012;134(1):294–301. doi: 10.1016/j.matchemphys.2012.02.068
  • Hsu CJ, Chang CY, Kao PW, et al. Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater. 2006;54(19):5241–5249. doi: 10.1016/j.actamat.2006.06.054
  • Zhang Q, Xiao BL, Wang WG, et al. Reactive mechanism and mechanical properties of in situ composites fabricated from an Al–TiO2 system by friction stir processing. Acta Mater. 2012;60(20):7090–7103. doi: 10.1016/j.actamat.2012.09.016
  • Dolatkhah A, Golbabaei P, Besharati Givi MK, et al. Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Des. 2012;37(0):458–464. doi: 10.1016/j.matdes.2011.09.035
  • Mahmoud ERI, Ikeuchi K, Takahashi M. Fabrication of SiC particle reinforced composite on aluminium surface by friction stir processing. Sci Technol Weld Join. 2008;13(7):607–618. doi: 10.1179/136217108X333327
  • Khodabakhshi F, Ghasemi Yazdabadi H, Kokabi AH, et al. Friction stir welding of a P/M Al–Al2O3 nanocomposite: microstructure and mechanical properties. Mater Sci Eng A. 2013;585(0):222–232. doi: 10.1016/j.msea.2013.07.062
  • Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A. 2009;500(1–2):84–91. doi: 10.1016/j.msea.2008.09.064
  • Bauri R, Yadav D, Suhas G. Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater Sci Eng A. 2011;528(13–14):4732–4739. doi: 10.1016/j.msea.2011.02.085
  • Guo J, Amira S, Gougeon P, et al. Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite. Mater Charact. 2011;62(9):865–877. doi: 10.1016/j.matchar.2011.06.007
  • Zhang Q, Xiao BL, Wang QZ, et al. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Mater Lett. 2011;65(13):2070–2072. doi: 10.1016/j.matlet.2011.04.030
  • Mostafapour Asl A, Khandani ST. Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method. Mater Sci Eng A. 2013;559(0):549–557. doi: 10.1016/j.msea.2012.08.140
  • Lim DK, Shibayanagi T, Gerlich AP. Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A. 2009;507(1-2):194–199. doi: 10.1016/j.msea.2008.11.067
  • Liu ZY, Xiao BL, Wang WG, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 2012;50(5):1843–1852. doi: 10.1016/j.carbon.2011.12.034
  • Liu ZY, Xiao BL, Wang WG, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon. 2014;69(0):264–274. doi: 10.1016/j.carbon.2013.12.025
  • Ahmad I, Kennedy A, Zhu YQ. Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear. 2010;269(1–2):71–78. doi: 10.1016/j.wear.2010.03.009
  • Alidokht SA, Abdollah-zadeh A, Assadi H. Effect of applied load on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear. 2013;305(1–2):291–298. doi: 10.1016/j.wear.2012.11.043
  • Aruri D, Adepu K, Adepu K, et al. Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing. J Mater Res Technol. 2013;2(4):362–369. doi: 10.1016/j.jmrt.2013.10.004
  • Devaraju A, Kumar A, Kotiveerachari B. Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Trans Nonferrous Met Soc China. 2013;23(5):1275–1280. doi: 10.1016/S1003-6326(13)62593-5
  • Devaraju A, Kumar A, Kumaraswamy A, et al. Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing. Mater Des. 2013;51:331–341. doi: 10.1016/j.matdes.2013.04.029
  • Lu D, Jiang Y, Zhou R. Wear performance of nano-Al2O3 particles and CNTs reinforced magnesium matrix composites by friction stir processing. Wear. 2013;305(1–2):286–290. doi: 10.1016/j.wear.2012.11.079
  • Mahmoud ERI, Takahashi M, Shibayanagi T, et al. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear. 2010;268(9–10):1111–1121. doi: 10.1016/j.wear.2010.01.005
  • Narimani M, Lotfi B, Sadeghian Z. Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing. Surf Coat Technol. 2016;285:1–10. doi: 10.1016/j.surfcoat.2015.11.015
  • Rejil CM, Dinaharan I, Vijay SJ, et al. Microstructure and sliding wear behavior of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate. Mater Sci Eng A. 2012;552:336–344. doi: 10.1016/j.msea.2012.05.049
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Microstructure and texture development during friction stir processing of Al–Mg alloy sheets with TiO2 nanoparticles. Mater Sci Eng A. 2014;605:108–118. doi: 10.1016/j.msea.2014.03.008
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of nanometric inclusions on the microstructural characteristics and strengthening of a friction-stir processed aluminum–magnesium alloy. Mater Sci Eng A. 2015;642:215–229. doi: 10.1016/j.msea.2015.06.081
  • Azizieh M, Kokabi AH, Abachi P. Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Des. 2011;32(4):2034–2041. doi: 10.1016/j.matdes.2010.11.055
  • Hoziefa W, Toschi S, Ahmed MMZ, et al. Influence of friction stir processing on the microstructure and mechanical properties of a compocast AA2024-Al2O3 nanocomposite. Mater Des. 2016;106:273–284. doi: 10.1016/j.matdes.2016.05.114
  • Shamsipur A, Kashani-Bozorg SF, Zarei-Hanzaki A. The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf Coat Technol. 2011;206(6):1372–1381. doi: 10.1016/j.surfcoat.2011.08.065
  • Sharifitabar M, Kashefi M, Khorshahian S. Effect of friction stir processing pass sequence on properties of Mg–ZrSiO4–Al2O3 surface hybrid micro/nano-composites. Mater Des. 2016;108:1–7. doi: 10.1016/j.matdes.2016.06.087
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Reactive friction stir processing of AA 5052–TiO2 nanocomposite: process–microstructure–mechanical characteristics. Mater Sci Technol. 2015;31(4):426–435. doi: 10.1179/1743284714Y.0000000573
  • Anon. ASTM standard E8M. Tension testing of metallic materials. Annual Book of ASTM Standards; ASTM, West Conshohocken; 03.01.1998.
  • Kamp N, Sullivan A, Robson JD. Modelling of friction stir welding of 7xxx aluminium alloys. Mater Sci Eng A. 2007;466(1–2):246–255. doi: 10.1016/j.msea.2007.02.070
  • Khodabakhshi F, Haghshenas M, Sahraeinejad S, et al. Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene. Mater Charact. 2014;98:73–82. doi: 10.1016/j.matchar.2014.10.013
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: in-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization. Mater Charact. 2015;108:102–114. doi: 10.1016/j.matchar.2015.08.016
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: microstructure and mechanical properties. Mater Sci Eng A. 2016;666:225–237. doi: 10.1016/j.msea.2016.04.078
  • McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater. 2008;58(5):349–354. doi: 10.1016/j.scriptamat.2007.09.064
  • Sato YS, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A. 2002;33(3):625–635. doi: 10.1007/s11661-002-0124-3
  • Etter AL, Baudin T, Fredj N, Penelle R. Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds. Mater Sci Eng, A. 2007;445–446:94–99. doi: 10.1016/j.msea.2006.09.036
  • Zhou F, Liao XZ, Zhu YT, et al. Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Mater. 2003;51(10):2777–2791. doi: 10.1016/S1359-6454(03)00083-1
  • Jata KV, Semiatin SL. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr Mater. 2000;43(8):743–749. doi: 10.1016/S1359-6462(00)00480-2
  • Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207. doi: 10.1016/j.pmatsci.2013.09.002
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing. Mater Sci Eng A. 2015;626:458–466. doi: 10.1016/j.msea.2014.12.110
  • Wang B, Lei B-B, Zhu J-X, et al. EBSD study on microstructure and texture of friction stir welded AA5052-O and AA6061-T6 dissimilar joint. Mater Des. 2015;87:593–599. doi: 10.1016/j.matdes.2015.08.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.