609
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Sulphide stress cracking of 17-4 PH for applications in oilfield components

ORCID Icon
Pages 1863-1878 | Received 09 Dec 2016, Accepted 04 May 2017, Published online: 24 May 2017

References

  • Slunder CJ, Hoenie AF, Hall AM. Thermal and mechanical treatment for precipitation-hardening stainless steel. 1967. (NASA-SP-50).
  • Badrak RP. Investigation of limits for UNS S17400 in H2S containing environments. In: NACE Corrosion 2017. NACE International; 2014. (Paper 3816).
  • Rashmi Bhavsar PE, Silverman S, MacWilliam D. Successful use of 17-4PH components in well equipment in sour oilfield environments. In: NACE Corrosion 2004. NACE International; 2004. (Paper 04120).
  • Ikeda A, Kowaka M. Stress corrosion cracking of low- and high-strength steels in wet hydrogen sulfide environment. Chem Econ Eng Rev. 1978;10:12–22.
  • Fraser JP, Treseder RS. Cracking of high strength steels in hydrogen sulfide solutions. In: Eight Annual Conference. Galveston, TX: National Association of Corrosion Engineers; 1952. p. 29–37.
  • NACE MR0175/ISO 15156-3. Petroleum and natural gas industries – environments in oil and gas production – Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys. American National Standards Institute (ANSI)/NACE International 2009; 2009.
  • Prepared by the Working Party on Corrosion in Oil and Gas Production. Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H2S-Containing Environments in Oil and Gas Production (EFC 16 – 3rd Edition); 2009.
  • Prepared by the Working Party on Corrosion in Oil and Gas Production. Corrosion Resistant Alloys for Oil and Gas Production – Guidance on General Requirements and Test Methods for H2S Service: (EFC 17 – 2nd Edition); 2002.
  • NACE International Work Group T-1F-21g. Use of corrosion-resistant alloys in oilfield environments. 2000. (192).
  • United States Environmental Protection Agency. Report to Congress on Hydrogen Sulfide Air Emissions Associated With the Extraction of Oil and Natural Gas. 1993. Available from: <https://nepis.epa.gov>
  • Marriott RA, Pirzadeh P, Marrugo-Hernandez JJ, et al. Hydrogen sulfide formation in oil and gas. Can J Chem. 2016;94:406–413. doi: 10.1139/cjc-2015-0425
  • NACE MR0175/ISO 15156-1. Petroleum and natural gas industries – Materials for use in H2S-containing environments in oil and gas production – Part 1: general principles for selection of cracking-resistant materials. American National Standards Institute (ANSI)/NACE International; 2009.
  • International Energy Agency. World energy outlook 2008. Vol. 23. Paris (France): International Energy Agency; 2008.
  • International Energy Agency. Resources to reserves 2013 – oil, gas and coal technologies for the energy markets of the future. 2013. Available from: <http://www.iea.org/publications/freepublications/publication/resources-to-reserves-2013.html>
  • Guyer HH. Industrial processes and waste stream management. Vol. 4. New York: Wiley; 1998.
  • Smith L, Craig B. Corrosion mechanisms and material performance in environments containing hydrogen sulfide and elemental sulfur. In: SACNUC Workshop, Brussels; 2008 Oct 22–23; 2008.
  • Choi YS, Young D, Nešić S, et al. Wellbore integrity and corrosion of carbon steel in CO2 geologic storage environments: a literature review. Int J Greenh Gas Control. 2013;16:S70–S77. doi: 10.1016/j.ijggc.2012.12.028
  • Zhang Y, Pang X, Qu S, et al. Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition. Corros Sci. 2012;59:186–197. doi: 10.1016/j.corsci.2012.03.006
  • ASTM A564/A564M – 13. Standard specification for hot-rolled and cold-finished age-hardening stainless steel. ASTM International; 2002. p. 1–7. https://doi.org/10.1520/A0564_A0564M-13
  • Nakhaie D, Moayed MH. Pitting corrosion of cold rolled solution treated 17-4 PH stainless steel. Corros Sci. 2014;80:290–298. doi: 10.1016/j.corsci.2013.11.039
  • Mesquita TJ, Chauveau E, Mantel M, et al. Corrosion and metallurgical investigation of two supermartensitic stainless steels for oil and gas environments. Corros Sci. 2014;81:152–161. doi: 10.1016/j.corsci.2013.12.015
  • Wang J, Lin Y, Zeng D, et al. Effects of the process parameters on the microstructure and properties of nitrided 17-4PH stainless steel. Metall Mater Trans B. 2013;44:414–422. doi: 10.1007/s11663-012-9781-9
  • Bhambroo R, Roychowdhury S, Kain V, et al. Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel. Mater Sci Eng A. 2013;568:127–133. doi: 10.1016/j.msea.2013.01.011
  • Tsay LW, Lee WC, Shiue RK, et al. Notch tensile properties of laser-surface-annealed 17-4 PH stainless steel in hydrogen-related environments. Corros Sci. 2002;44:2101–2118. doi: 10.1016/S0010-938X(02)00023-9
  • Raja KS, Prasad Rao K. Environmental cracking behaviour of the precipitation hardened stainless steel, 17-4 PH, under applied potential. Mater Corros. 1995;46:370–375. doi: 10.1002/maco.19950460605
  • Chen Z, Zhou G, Chen Z. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching. Mater Sci Eng A. 2012;534:536–541. doi: 10.1016/j.msea.2011.12.004
  • Christien F, Le Gall R, Saindrenan G. Phosphorus grain boundary segregation in steel 17-4 PH. Scr Mater. 2003;48:301–306. doi: 10.1016/S1359-6462(02)00310-X
  • Wang J, Zou H, Li C, et al. The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350°C. Mater Charact. 2008;59:587–591. doi: 10.1016/j.matchar.2007.04.018
  • Hsu K-C, Lin C-K. Influence of frequency on the high-temperature fatigue crack growth behavior of 17-4 PH stainless steels. Mater Trans. 2007;48:490–499. doi: 10.2320/matertrans.48.490
  • Hsiao CN, Chiou CS, Yang JR. Aging reactions in a 17-4 PH stainless steel. Mater Chem Phys. 2002;74:134–142. doi: 10.1016/S0254-0584(01)00460-6
  • Esfandiari M, Dong H. The corrosion and corrosion-wear behaviour of plasma nitrided 17-4PH precipitation hardening stainless steel. Surf Coat Technol. 2007;202:466–478. doi: 10.1016/j.surfcoat.2007.06.069
  • Arisoy CF, Başman G, Şeşen MK. Failure of a 17-4 PH stainless steel sailboat propeller shaft. Eng Fail Anal. 2003;10:711–717. doi: 10.1016/S1350-6307(03)00041-4
  • Bellezze T, Roventi G, Fratesi R. Localised corrosion and cathodic protection of 17 4PH propeller shafts. Corros Eng Sci Technol. 2013;48:340–345. doi: 10.1179/1743278213Y.0000000082
  • Liu RL, Yan MF, Wu YQ, et al. Microstructure and properties of 17-4PH steel plasma nitrocarburized with a carrier gas containing rare earth elements. Mater Charact. 2009;61:19–24. doi: 10.1016/j.matchar.2009.09.017
  • Tavares SSM, da Silva FJ, Scandian C, et al. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel. Corros Sci. 2010;52:3835–3839. doi: 10.1016/j.corsci.2010.07.016
  • Ziewiec A, ZieliŃska-Lipiec A, Tasak E. Microstructure of welded joints of X5CrNiCuNb16-4 (17-4 PH) martensitic stainlees steel after heat treatment. Arch Metall Mater. 2014;59:965–970.
  • Yan MF, Liu RL, Wu DL. Improving the mechanical properties of 17-4PH stainless steel by low temperature plasma surface treatment. Mater Des. 2010;31:2270–2273. doi: 10.1016/j.matdes.2009.10.005
  • Shoushtari MRT. Effect of ageing heat treatment on corrosion behavior of 17-4 PH stainless steel in 3.5% NaCl. Int J ISSI. 2010;7:33–36.
  • Shakshin NI, Deordiev GI, Scherbinin VE, et al. Evaluation of thermal ageing conditions in 17-4 PH stainless steel by Fourier descriptor analysis of magnetic hysteresis loops. NDT E Int. 1996;29:379–385. doi: 10.1016/S0963-8695(96)00041-2
  • Mirzadeh H, Najafizadeh A. The rate of dynamic recrystallization in 17-4 PH stainless steel. Mater Des. 2010;31:4577–4583. doi: 10.1016/j.matdes.2010.05.052
  • Kochmański P, Nowacki J. Activated gas nitriding of 17-4 PH stainless steel. Surf Coat Technol. 2006;200:6558–6562. doi: 10.1016/j.surfcoat.2005.11.034
  • Chiang WC, Pu CC, Yu BL, et al. Hydrogen susceptibility of 17-4 PH stainless steel. Mater Lett. 2003;57:2485–2488. doi: 10.1016/S0167-577X(02)01298-3
  • Tavares SSM, Pardal JM, Menezes L, et al. Failure analysis of PSV springs of 17-4PH stainless steel. Eng Fail Anal. 2009;16:1757–1764. doi: 10.1016/j.engfailanal.2008.12.003
  • Viswanathan UK, Banerjee S, Krishnan R. Effects of aging on the microstructure of 17-4 PH stainless steel. Mater Sci Eng A. 1988;104:181–189. doi: 10.1016/0025-5416(88)90420-X
  • Liu RL, Yan MF. Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing. Mater Des. 2010;31:2355–2359. doi: 10.1016/j.matdes.2009.11.069
  • Granda-Gutiérrez EE, Díaz-Guillén JC, Díaz-Guillén JA, et al. Sulfide stress cracking and electrochemical corrosion of precipitation hardening steel after plasma oxy-nitriding. J Mater Eng Perform. 2014;23:4148–4153. doi: 10.1007/s11665-014-1085-6
  • Esfandiari M, Dong H. Plasma surface engineering of precipitation hardening stainless steels. Surf Eng. 2006;22:86–92. doi: 10.1179/174329406X98368
  • Sun Y, Bell T. Low temperature plasma nitriding characteristics of precipitation hardening stainless steel. Surf Eng. 2003;19:331–336. doi: 10.1179/026708403225007545
  • Nice P, Martin J. Application limits for super martensitic and precipitation hardened stainless steel bar-stock materials. In: NACE Corrosion 2005. Houston, TX: NACE International; 2005. (Paper 05091).
  • Leyland A, Lewis DB, Stevensom PR, et al. Low temperature plasma diffusion treatment of stainless steels for improved wear resistance. Surf Coat Technol. 1993;62:608–617. doi: 10.1016/0257-8972(93)90307-A
  • Gaugh RR. Sulfide stress cracking of precipitation hardening stainless steels. Mater Perform. 1977;16:24–29.
  • Salinas-Bravo VM, Gonzalez-Rodriguez JG. Stress corrosion cracking susceptibility of 17-4PH turbine steel in aqueous environments. Br Corros J. 1995;30:77–79. doi: 10.1179/bcj.1995.30.1.77
  • Kundu S, Roy D, Chatterjee S, et al. Influence of interface microstructure on the mechanical properties of titanium/17-4 PH stainless steel solid state diffusion bonded joints. Mater Des. 2012;37:560–568. doi: 10.1016/j.matdes.2011.10.041
  • El Hilali F, Habashi M, Mohsine A. Comportement mécanique de l’acier inoxydable martensitique 17-4 PH en corrosion sous contrainte et à la fragilisation par l’hydrogéne environnemental. Ann Chim Sci Mat. 1999;24:169–194. doi: 10.1016/S0151-9107(99)80044-0
  • Wang J, Zou H, Li C, et al. The microstructure evolution of type 17-4PH stainless steel during long-term aging at 350°C. Nucl Eng Des. 2006;236:2531–2536. doi: 10.1016/j.nucengdes.2006.03.017
  • Christien F, Telling MTF, Knight KS. A comparison of dilatometry and in-situ neutron diffraction in tracking bulk phase transformations in a martensitic stainless steel. Mater Charact. 2013;82:50–57. doi: 10.1016/j.matchar.2013.05.002
  • ASTM E975 – 13. Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation. Vol. 3. ASTM International; 2009. p. 1–7. doi: 10.1520/E0975-13
  • Cassagne T, Bonis M, Duret C, et al. Limitations of 17-4 PH metallurgical, mechanical and corrosion aspects. In: NACE Corrosion 2003. San Diego, CA: NACE International; 2003. (Paper 03102).
  • NACE/ASTM G193 – 12d. Standard terminology and acronyms relating to corrosion. NACE Int./ASTM Int.; 2014. p. 1–24. doi: 10.1520/G0193-12D.
  • Suleimenov OM, Krupp RE. Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320°C and at saturation pressures. Geochim Cosmochim Acta. 1994;58:2433–2444. doi: 10.1016/0016-7037(94)90022-1
  • Singer M, Brown B, Camacho A, et al. Combined effect of CO2, H2S and acetic acid on bottom of the line corrosion. In: NACE Corrosion 2007. Nashville, TN: NACE International; 2007. (Paper 07661).
  • Takeno N. Atlas of Eh-pH diagrams intercomparison of thermodynamic databases. Tokyo, Japan: National Institute of Advanced Industrial Science and Technology; 2005.
  • Berkowitz BJ, Horowitz HH. The role of H2S in the corrosion and hydrogen embrittlement of steel. J Electrochem Soc. 1982;129:468–474. doi: 10.1149/1.2123882
  • Latanision RM, Opperhauser H. The intergranular embrittlement of nickel by hydrogen: the effect of grain boundary segregation. Metall Trans. 1974;5:483–492. doi: 10.1007/BF02644118
  • Crolet JL, Bonis MR. Revisiting hydrogen in steel, part I: theoretical aspects of charging, stress cracking and permeation. In: NACE Corrosion 2001. Houston, TX: NACE International; 2001. (Paper 01067).
  • Crolet JL, Bonis MR. Revisiting hydrogen in steel, part II: experimental verifications. In: NACE Corrosion 2001. NACE International; 2001. (Paper 01072).
  • Dean FWH. A review of hydrogen flux promoters. In: NACE Corrosion 2010. San Antonio, TX: NACE International; 2010 (Paper 10182).
  • Kane RD, Greer JB. Sulfide stress cracking of high-strength steels in laboratory and oilfield environments. J Pet Technol. 1977;29:1483–1488. doi: 10.2118/6144-PA
  • Townsend Jr HE. Hydrogen sulfide stress corrosion cracking of high strength steel wire. Corrosion. 1972;28:39–46. doi: 10.5006/0010-9312-28.2.39
  • Crolet J-L. Analysis of the various processes downstream cathodic hydrogen charging, I: diffusion, laboratory permeation and measurement of hydrogen content and diffusion coefficient. Matériaux Tech. 2016;104:205. doi: 10.1051/mattech/2016007
  • Crolet J-L. Analysis of the various processes downstream cathodic hydrogen charging, II: charging transients, precharging and natural permeation. Matériaux Tech. 2016;104:206. doi: 10.1051/mattech/2016013
  • Crolet J-L. Analysis of the various processes downstream cathodic hydrogen charging III: mechanistic issues on charging, degassing and sulfide stress cracking. Matériaux Tech. 2016;104:302. doi: 10.1051/mattech/2016020
  • Crolet J-L. Analysis of the various processes downstream cathodic hydrogen charging, IV: detailed mechanism of sulfide stress cracking. Matériaux Tech. 2016;104:303. doi: 10.1051/mattech/2016026
  • Ma H, Cheng X, Li G, et al. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros Sci. 2000;42:1669–1683. doi: 10.1016/S0010-938X(00)00003-2
  • Shoesmith DW. The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21°C. J Electrochem Soc. 1980;127:1007. doi: 10.1149/1.2129808
  • NACE TM-0177. Laboratory testing of metals for resistance to sulfide stress cracking and stress corrosion cracking in H2S environments. NACE International 1, Item 21212; 2005.
  • NACE TM-0198. Slow strain rate test method for screening Corrosion-Resistant Alloys (CRAs) for stress corrosion cracking in sour oilfield service. 2016.
  • Nisbet WJ, Hartman RHC, Handel G. Rippled strain rate test for CRA sour service materials selection. In: NACE Corrosion 1997. Houston, TX: NACE International; 1997. (Paper 58).
  • ASTM G49 – 85 (Reapproved 2011). Standard practice for preparation and use of direct tension stress-corrosion test specimens. ASTM B Stand. 2000;85:6–11.
  • ASTM G39 – 99 (Reapproved 2011). Standard practice for preparation and use of bent-beam stress-corrosion test. ASTM Int. 2005;99:1–8.
  • ASTM G38. Standard practice for making and using C-ring stress-corrosion test specimens. ASTM Int. 2013. doi: 10.1520/G0038-01R13
  • BS EN ISO 7539-2:1995. Corrosion of metals and alloys – stress corrosion testing –part 2: preparation and use of bent-beam specimens. 3, (2003). Technical Committee ISO/TC 156, Corrosion of metals and alloys.
  • ISO 7539-5. Corrosion of metals and alloys – stress corrosion testing – part 5: preparation and use of C-ring specimens. 1989. Technical Committee ISO/TC 156, Corrosion of metals and alloys.
  • ISO 7539-7. Corrosion of metals and alloys – stress corrosion testing – part 7: method for slow strain rate testing. 2005. Technical Committee ISO/TC 156, Corrosion of metals and alloys.
  • Dent P, Fowler C, Bond S, et al. New axially loaded full ring test method for assessment of susceptibility of girth welds and parent pipe to sour service cracking. In: NACE Corrosion 2017. New Orleans, LA: NACE International; 2017. (Paper 8965).
  • OTI 95 635. A test method to determine the susceptibility to cracking of linepipe steels in sour service. 1996. Health and Safety Executive. Available from: <http://www.hse.gov.uk>
  • Turnbull A. Test methods for environment assisted cracking. Br Corros J. 1992;27:271–289. doi: 10.1179/bcj.1992.27.4.271
  • Henthorne M. The slow strain rate stress corrosion cracking test – a 50 year retrospective. Corrosion. 2016;9312:1–33.
  • Ikeda A, Ueda M, Okamoto H. The role of slow strain rate testing on evaluation of corrosion resistant alloys for hostile hot sour gas production. In: Kane RD, editor. Slow strain rate testing for the evaluation of environmentally induced cracking: research and engineering applications. Philadelphia (PA): American Society for Testing and Materials; 1993. p. 240–262. doi: 10.1520/STP1210-EB
  • Wasnik DN, Kain V, Samajdar I, et al. Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries. Acta Mater. 2002;50:4587–4601. doi: 10.1016/S1359-6454(02)00306-3
  • Cíhal V, Lasek S, Blahetová M, et al. Trends in the electrochemical polarization potentiodynamic reactivation method – EPR. Chem Biochem Eng Q. 2007;21:47–54.
  • Kim JJ, Cho SJ. Detection of stress corrosion cracking of a martensitic stainless steel by electrochemical noise analysis. J Mater Sci Lett. 2003;22:865–867. doi: 10.1023/A:1024446216576
  • González-Rodriguez JG, Salinas-Bravo VM, García-Ochoa E, et al. Use of electrochemical potential noise to detect initiation and propagation of stress corrosion cracks in a 17-4 PH steel. Corrosion. 1997;53:693–699. doi: 10.5006/1.3290302
  • ASTM G148. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique. ASTM Int. 2011;i:1–10.
  • Dean FWH, Fray DJ. Ultrasensitive technique for detection of hydrogen emanating from steel and other solid surfaces. Mater Sci Technol. 2000;16:41–46. doi: 10.1179/026708300773002645
  • Dean FWH. Measurement of hydrogen permeation through structural steel sections of varying thickness at 19°C. Mater Sci Technol. 2005;21:347–351. doi: 10.1179/174328405X29212
  • Mabho N, Bergers K, Flock J, et al. Determination of diffusible and total hydrogen concentration in coated and uncoated steel using melt and solid extraction techniques: part I. Talanta. 2010;82:1298–1305. doi: 10.1016/j.talanta.2010.06.045
  • Kumar PG, Yu-ichi K. Diffusible hydrogen in steel weldments. Trans JWRI. 2013;42:39–62.
  • Evers S, Senöz C, Rohwerder M. Hydrogen detection in metals: a review and introduction of a Kelvin probe approach. Sci Technol Adv Mater. 2013;14:014201. doi: 10.1088/1468-6996/14/1/014201
  • Tuttle RN. Selection of materials designed for use in a sour gas environment. Mater Prot. 1970;9:2–4.
  • Thompson RM, Kohut GB, Canfield DR, et al. Sulfide stress cracking failures of 12Cr and 17-4PH stainless steel wellhead equipment. Corrosion. 1991;47:216–220. doi: 10.5006/1.3585248
  • Treseder RS. Oil Industry Experience with Hydrogen Embrittlement and Stress Corrosion Cracking. In: Staehle RW, editor. Stress corrosion cracking and hydrogen embrittlement of iron base alloys. National Association of Corrosion Engineers; 1977. p. 147–161.
  • Vitale DD. Effect of hydrogen sulfide partial pressure, PH and chloride content on the SSC resistance of martensitic stainless steels and martensitic precipitation hardening stainless steels. In: NACE Corrosion 1999, Houston, TX; 1999. (Paper 584).
  • Kane RD, Quiroga P. Evaluation of SSC resistance of ‘sweet’ materials in H2S environments for development of ballot guidelines in MR0175/ISO 15156. In: NACE Corrosion 2008. New Orleans, LA: NACE International; 2008. (Paper 08099).
  • Denpo K, Ogawa H. Passivity of corrosion-resistant alloys in environments containing chloride and hydrogen sulfide. Corrosion. 1997;53:718–723. doi: 10.5006/1.3290305
  • Gareau FS, Chambers NA, Martinson AM. Effect of stress and environment on failures of 17-4 PH stainless steel valve. In: NACE Corrosion 1993. Houston, TX: NACE International; 1993. (Paper 146).
  • NACE MR0175 / ISO 15156-3. Petroleum and natural gas industries – Materials for use in H2S-containing environments in oil and gas production – part 3: cracking-resistant CRAs (corrosion resistant alloys) and other alloys – Technical Circular 1. 2016. Prepared by the ISO 15156 Maintenance Agency on behalf of Technical Committee ISO/TC 67.
  • Hara T, Asahi H. Effect of d d-ferrite on sulfide stress cracking in a low carbon 13 mass% chromium steel. ISIJ Int. 2000;40:1134–1141. doi: 10.2355/isijinternational.40.1134
  • Karaminezhaad M, Sharafi S, Dalili K. Effect of molybdenum on SCC of 17-4PH stainless steel under different aging conditions in chloride solutions. J Mater Sci. 2006;41:3329–3333. doi: 10.1007/s10853-005-5416-8
  • Solheim KG, Solberg JK, Walmsley J, et al. The role of retained austenite in hydrogen embrittlement of supermartensitic stainless steel. Eng Fail Anal. 2013;34:140–149. doi: 10.1016/j.engfailanal.2013.07.025
  • Zeemann A. Failures of 17-4 PH steel parts in non sour environments. In: NACE Corrosion 2014. San Antonio, TX: NACE International; 2014. (Paper 4298).
  • Sylyester ON, Celestine ON, Reuben IG, et al. Review of corrosion kinetics and thermodynamics of CO2 and H2S corrosion effects and associated prediction / evaluation on oil and gas pipeline system. Int J Sci Technol Res. 2012;1:156–162.
  • Cai Y, Guo P, Liu D, et al. Comparative study on CO2 corrosion behavior of N80, P110, X52 and 13Cr pipe lines in simulated stratum water. Sci China Technol Sci. 2010;53:2342–2349. doi: 10.1007/s11431-010-3093-6
  • Sun W, Nesic S. Kinetics of iron sulfide and mixed iron sulfide/carbonate scale precipitation in CO2/H2S corrosion. In: Corrosion 2006, San Diego, CA; 2006. (Paper 06644).
  • Mancia F. The effect of environmental modification on the sulphide stress corrosion cracking resistance of 13Cr martensitic stainless steel in H2S-CO2-Cl− systems. Corros Sci. 1987;27:1225–1237. doi: 10.1016/0010-938X(87)90111-9
  • Liu ZY, Wang XZ, Liu RK, et al. Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2 annular environment. J Mater Eng Perform. 2014;23:1279–1287. doi: 10.1007/s11665-013-0855-x
  • Ćwiek J. Plasma nitriding as a prevention method against hydrogen degradation of steel. Adv Mater Sci. 2009;9:25–32.
  • Ćwiek J, Baczyńska M. Behaviour of nitrided layers subjected to influence of hydrogen. Arch Mater Sci Eng. 2010;43:30–41.
  • Sobieszczyk S, Łunarska E, Ćwiek J, et al. Hydrogen charging of plasma nitrided steel in acid solution. Manuf Eng. 2006;17:205–208.
  • Coseglio, M, Connolly, BJ, Xiao-Ying Li, et al. Susceptibility of plasma nitrided 17-4 PH to Sulfide Stress Cracking (SSC) in H2S-containing environments. In: NACE Corrosion 2017. New Orleans, LA: NACE International; 2017. (Paper 9342).
  • Wang J, Lin Y, Fan H, et al. Effects of temperature on microstructure and wear of salt bath nitrided 17-4PH stainless steel. J Mater Eng Perform. 2012;21:1708–1713. doi: 10.1007/s11665-011-0077-z
  • Liu RL, Yan MF. The microstructure and properties of 17-4PH martensitic precipitation hardening stainless steel modified by plasma nitrocarburizing. Surf Coat Technol. 2010;204:2251–2256. doi: 10.1016/j.surfcoat.2009.12.016
  • Kochmański P, Nowacki J. Influence of initial heat treatment of 17-4 PH stainless steel on gas nitriding kinetics. Surf Coat Technol. 2008;202:4834–4838. doi: 10.1016/j.surfcoat.2008.04.058
  • Li G, Wang J, Li C, et al. Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel. Nucl Instrum Methods Phys Res B. 2008;266:1964–1970. doi: 10.1016/j.nimb.2008.02.073
  • Tesi B, Bacci T, Poli G. Analysis of surface structures and of size and shape variations in ionitrided precipitation hardening stainless steel samples. Vacuum. 1985;35:307–314. doi: 10.1016/0042-207X(85)90113-7
  • Aizawa T, Kuwahara H. Plasma nitriding as an environmentally benign surface structuring process. Mater Trans. 2003;44:1303–1310. doi: 10.2320/matertrans.44.1303
  • Rembges W, Oppel W. Process control of plasma nitriding and plasma nitrocarburizing in industry. Surf Coat Technol. 1993;59:129–134. doi: 10.1016/0257-8972(93)90069-Z
  • Pye D. An introduction to nitriding In: Practical nitriding and ferritic nitrocarburizing. ASM International; 2003; p. 71–88.
  • Hosseini SR, Ashrafizadeh F, Kermanpur A. Calculation and experimentation of the compound layer thickness in gas and plasma nitriding of iron. Iran J Sci Technol. 2010;34:553–566.
  • Podgornik B, Vižintin J, Leskovšek V. Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel. Surf Coat Technol. 1998;108–109:454–460. doi: 10.1016/S0257-8972(98)00571-4
  • ASM Handbook. Heat treating ASM metals handbook. Vol. 4. ASM International; 1991.
  • Dong H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. Int Mater Rev. 2010;55:65–98. doi: 10.1179/095066009X12572530170589
  • Kim SK, Yoo JS, Priest JM, et al. Characteristics of martensitic stainless steel nitrided in a low-pressure RF plasma. Surf Coat Technol. 2003;163-164:380–385. doi: 10.1016/S0257-8972(02)00631-X
  • Dong H, Esfandiari M, Li XY. On the microstructure and phase identification of plasma nitrided 17-4PH precipitation hardening stainless steel. Surf Coat Technol. 2008;202:2969–2975. doi: 10.1016/j.surfcoat.2007.10.036
  • Lunarska E, Michalski J. Hydrogen behavior in the iron surface layer modified by plasma nitriding and ion boronising. Mater Corros. 2000;51:841–849. doi: 10.1002/1521-4176(200012)51:12<841::AID-MACO841>3.0.CO;2-F
  • Devanathan MAV, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium. Proc R Soc A Math Phys Eng Sci. 1962;270:90–102. doi: 10.1098/rspa.1962.0205
  • Wolarek Z, Zakroczymski T. Hydrogen transport in plasma nitrided iron. Acta Mater. 2004;52:2637–2643. doi: 10.1016/j.actamat.2004.02.011
  • Wolarek Z, Zakroczymski T. Hydrogen absorption in plasma-nitrided iron. Acta Mater. 2006;54:1525–1532. doi: 10.1016/j.actamat.2005.11.018
  • Jebaraj JJM, Morrison DJ, McLaughlin JB, et al. Effect of nitriding on the hydrogen diffusion coefficient through AISI 4340. J Electrochem Soc. 2014;161:C261–C267. doi: 10.1149/2.077405jes
  • Fassini FD, Zampronio MA, De Miranda PEV. Design of ion-implanted coatings to impede hydrogen contamination of steel. Corros Sci. 1993;35:549–556. doi: 10.1016/0010-938X(93)90188-M
  • Buchhagen P, Bell T. Simulation of the residual stress development in the diffusion layer of low alloy plasma nitrided steels. Comput Mater Sci. 1996;7:228–234. doi: 10.1016/S0927-0256(96)00085-7
  • Şengül AB, Çelik A. Effect of plasma nitriding on fatigue crack growth on AISI 4140 steel under variable amplitude loading. Surf Coat Technol. 2011;205:5172–5177. doi: 10.1016/j.surfcoat.2011.05.027
  • Kovaci H, Yetim AF, Baran Ö, et al. Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: part 1-constant amplitude loading. Mater Sci Eng A. 2016;672:257–264. doi: 10.1016/j.msea.2016.07.002
  • Wan J, Fatemi A. Cyclic deformation and fatigue behaviour of ion-nitrided steel. Int J Fatigue. 1995;17:15–24. doi: 10.1016/0142-1123(95)93046-5
  • Kolozváry Z. Residual stresses in nitriding. In Totten G, Howes M, Inoue T, editors. Handbook of residual stresses and deformation of steel. ASM International; 2001. p. 209–219.
  • Leskovšek V, Podgornik B, Nolan D. Modelling of residual stress profiles in plasma nitrided tool steel. Mater Charact. 2008;59:454–461. doi: 10.1016/j.matchar.2007.03.009
  • Loh NL, Siew LW. Residual stress profiles of plasma nitrided steels. Surf Eng. 1999;15:137–142. doi: 10.1179/026708499101516489

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.