179
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterisation of nanostructured Al–Al3V and Al–(Al3V–Al2O3) composites by powder metallurgy

, &
Pages 179-190 | Received 12 Apr 2017, Accepted 28 Jul 2017, Published online: 28 Aug 2017

References

  • Rawal SP. Metal–matrix compositesforspaceapplications. JOM. 2001;53:14–17. doi: 10.1007/s11837-001-0139-z
  • Sidhu SS, Batish A, Kumar S. Analysis of residual stresses in particulate reinforced aluminium matrix composite after EDM. Mater Sci Technol. 2015;31:1850–1859. doi: 10.1179/1743284715Y.0000000033
  • Miracle DB. Metal matrix composites from science to technological significance. Compos Sci Technol. 2005;65:2526–2540. doi: 10.1016/j.compscitech.2005.05.027
  • Miserez A, Mortensen A. Fracture of aluminum reinforced with densely packed ceramic particles: influence of matrix hardening. Acta Mater. 2004;52:5331–5345. doi: 10.1016/j.actamat.2004.07.038
  • Lee JC, Subramanian KN, Kim Y. The interface in Al2O3 particulate reinforced aluminum alloy composite and its role on the tensile properties. J Mater Sci. 1994;29:1983–1990. doi: 10.1007/BF01154671
  • Wang DJ, Huang YJ, Wu LZ, et al. Mechanical, acoustic and electrical properties of porous Ti-based metallic glassy/nanocrystalline composites. Mater Des. 2013;44:69–73. doi: 10.1016/j.matdes.2012.07.039
  • Rhee H, Whittington WR, Oppedal AL, et al. Mechanical properties of novel aluminum metal matrix metallic composites: application to overhead conductors. Mater Des. 2015;88:16–21. doi: 10.1016/j.matdes.2015.08.109
  • Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites – a review. J Mater Sci. 1991;26:1137–1156. doi: 10.1007/BF00544448
  • Suryanarayana C, Al-Aqeeli N. Mechanically alloyed nanocomposites. Prog Mater Sci. 2013;58:383. doi: 10.1016/j.pmatsci.2012.10.001
  • Murty BS, Ronganathan S. Novel materials synthesis by mechanical alloying/milling. Int Mater Rev. 1998;43:101–141. doi: 10.1179/imr.1998.43.3.101
  • Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9
  • Neikov OD, Naboychenko SS, Dowson G. Handbook of non-ferrous metal powders. Amesterdam: Elsevier; 2009.
  • Suryanarayana C, Ivanov E, Boldyrev VV. The science and technology of mechanical alloying. Mater Sci Eng A. 2001;304-306:151–158. doi: 10.1016/S0921-5093(00)01465-9
  • Koch CC, Whittenberger JD. Review: mechanical milling/ alloying of intermetallics. Intermetallics. 1996;4:339–355. doi: 10.1016/0966-9795(96)00001-5
  • Bera S, Zu berova Z, Hellmig RJ, et al. Synthesis of copper alloys with extended solid solubility and nano Al2O3 dispersion by mechanical alloying and equal channel angular pressing. Philos Mag. 2010;90:1465–1483. doi: 10.1080/14786430903365286
  • Enayati MH, Karimzadeh F, Anvari SZ. Synthesis of nanocrystalline NiAl by mechanical alloying. J Mater Process Technol. 2008;200:312–315. doi: 10.1016/j.jmatprotec.2007.09.023
  • Shirani Bidabadi AR, Enayati MH, Dastanpoor E, et al. Nanocrystalline intermetallic compounds in the Ni–Al–Cr system synthesized by mechanical alloying and their thermodynamic analysis. J Alloys Compd. 2013;581:91–100. doi: 10.1016/j.jallcom.2013.07.037
  • Anvari SZ, Karimzadeh F, Enayati MH. Synthesis and characterization of NiAl–Al2O3 nanocomposite powder by mechanical alloying. J Alloys Compd. 2009;477:178–181. doi: 10.1016/j.jallcom.2008.10.043
  • Hadef F. Synthesis and disordering of B2 TM-Al (TM = Fe, Ni, Co) intermetallic alloys by high energy ball milling: a review. Powder Technol. 2017;311:556–578. doi: 10.1016/j.powtec.2017.01.082
  • Shon IJ. Simultaneous synthesis and consolidation of nanocrystalline Al-TiC composite by high-frequency induction heating. Ceram Int. 2016;42:15113–15118. doi: 10.1016/j.ceramint.2016.06.129
  • Li M, Ma K, Jiang L, et al. Synthesis and mechanical behavior of nanostructured Al5083/n-TiB2 metal matrix composites. Mater Sci Eng A. 2016;656:241–248. doi: 10.1016/j.msea.2016.01.031
  • Naghiha H, Movahedi B, Asadi Asadabad M, et al. Amorphization and nanocrystalline Nb3Al intermetallic formation during mechanical alloying and subsequent annealing. Adv Powder Technol. 2016 (Article in press).
  • Mostaan H, Karimzadeh F, Abbasi MH. Synthesis and formation mechanism of nanostructured NbAl3 intermetallic during mechanical alloying and a kinetic study on its formation. Thermochim Acta. 2012;529:36–44. doi: 10.1016/j.tca.2011.11.017
  • Farrokhi A, Samadi A, Asadi Asadabad M, et al. Characterization of mechanically alloyed nano structured Fe3Al intermetallic compound by X-ray diffractometry. Adv Powder Technol. 2016 (Article in press).
  • Nayak SS, Pabi SK, Murty BS. Al–(L12)Al3Ti nanocomposites prepared by mechanical alloying: synthesis and mechanical properties. J Alloys Compd. 2010;492:128–133. doi: 10.1016/j.jallcom.2009.10.274
  • Srinivasan S, Chen SR, Schwarz RB. Synthesis of A1/A13Ti two-phase alloys by mechanical alloying. Mater Sci Eng A. 1992;153:691–695. doi: 10.1016/0921-5093(92)90272-3
  • Lee HM. Design of high-temperature high-strength Al- Ti- V- Zr alloys. Scr Metall. 1990;24:2443–2446. doi: 10.1016/0956-716X(90)90108-S
  • Wang P, Li H, Qi L, et al. Synthesis of Al-TiAl3 compound by reactive deposition of molten Al droplets and Ti powders. Prog Nat Sci Mater Int. 2011;21:153–158. doi: 10.1016/S1002-0071(12)60049-5
  • Lee K, Moon I. High temperature performance of dispersion-strengthened A1-Ti alloys prepared by mechanical alloying. Mater Sci Eng A. 1994;185:165–170. doi: 10.1016/0921-5093(94)90940-7
  • Murty GS, Joseph BE. Metal matrix composites with intermetallic reinforcement. U.S. Patent 7,794,520 B2, Date of Patent Sep. 14, 2010.
  • Knipling KE, Seidman DN, Dunand DC. Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys. Acta Mater. 2011;59:943–954. doi: 10.1016/j.actamat.2010.10.017
  • Zedalis MS, Fine ME. Precipitation and Ostwald ripening in dilute AI base-Zr-V alloys. Metall Mater Trans A. 1986;17:2187–2198. doi: 10.1007/BF02645917
  • Chen YC, Fine ME, Weertman JR, et al. Coarsening behavior of L12 structured Al3Is (ZrxV1-x) precipitates in rapidly solidified Al-Zr-V alloy. Scr Metall. 1987;21:1003–1008. doi: 10.1016/0036-9748(87)90143-8
  • Ciach R. Advanced light alloys and composites. London: Kluwer Academic Publisher; 1997.
  • Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys-areview. Z Metkd. 2006;97:246–265.
  • Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1:22–31. doi: 10.1016/0001-6160(53)90006-6
  • Chang KY, Moon KI, Lee KS. A study on the microstructural evolution of Al-25 At. pct V-12.5 At. pct M (M = Cu, Ni, Mn) powders by planetary ball milling. Metall Trans A. 2004;35:1853–1860. doi: 10.1007/s11661-004-0093-9
  • Aguilar C, Castro F, Martínez V, et al. Structural study of nanocrystalline solid solution of Cu–Mo obtained by mechanical alloying. Mater Sci Eng A. 2012;548:189–194. doi: 10.1016/j.msea.2012.03.105
  • Gu YW, Goh CW, Goi LS, et al. Solid state synthesis of nanocrystalline and/or amorphous 50Ni–50Ti alloy. Mater Sci Eng A. 2005;392:222–228. doi: 10.1016/j.msea.2004.09.025
  • Huang B, Ishihara KN, Shingu PH. Metastable phases of Al–Fe system by mechanical alloying. Mater Sci Eng A. 1997;231:72–79. doi: 10.1016/S0921-5093(97)00041-5
  • Li J, Li F, Hu K. Preparation of Ni/Al2O3 nanocomposite powder by high-energy ball milling andsubsequent heat treatment. J Mater Process Technol. 2004;147:236. doi: 10.1016/j.jmatprotec.2003.12.022
  • Welham NJ. Mechanical activation of the solid-state reaction between Al and TiO2. Mater Sci Eng A. 1998;255:81–89. doi: 10.1016/S0921-5093(98)00770-9
  • Oleszak D. NiAl-Al2O3 intermetallic matrix composite prepared by reactive milling and consolidation of powder. J Mater Sci. 2004;39:5169–5174. doi: 10.1023/B:JMSC.0000039204.08971.26
  • Tang F, Anderson IE, Gnaupel-Herold T, et al. Pure Al matrix composites produced by vacuum hot pressing: tensile properties and strengthening mechanisms. Mater Sci Eng A. 2004;383:362–373. doi: 10.1016/j.msea.2004.05.081
  • Salvador MD, Amigo V, Martinez N, et al. Microstructure and mechanical behaviour of Al–Si–Mg alloys reinforced with Ti–Al intermetallics. J Mater Process Technol. 2003;143–144:605–611. doi: 10.1016/S0924-0136(03)00440-0
  • Morris DG. The origins of strengthening in nanostructured metals and alloys. Rev Metal Madrid. 2010;46:173–186. doi: 10.3989/revmetalm.1008
  • Garbiec D, Jurczyk M, Zayonts NL, et al. Properties of Al-Al2O3 composites synthesized by spark plasma sintering method. Arch Civ Mech Eng. 2015;15:933–939. doi: 10.1016/j.acme.2015.02.004
  • Penchal Reddy M, Ubaid F, Shakoor RA, et al. Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process. Mater Sci Eng A. 2017;696:60–69. doi: 10.1016/j.msea.2017.04.064

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.