205
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of surface nanocrystallisation on the microstructure and wear resistance of vacuum carburised alloy

, , , , , & show all
Pages 220-228 | Received 20 May 2017, Accepted 03 Aug 2017, Published online: 22 Aug 2017

References

  • Yogo Y, Tanaka K. In situ observation for abnormal grain coarsening in vacuum-carburizing process. Metall Mater Trans A. 2014;45:2834–2841. doi: 10.1007/s11661-014-2233-1
  • Dychtoń K, Kocurek P, Rokicki P, et al. Microstructure and residual stress in AMS 6308 steel after vacuum carburizing and gas quenching. Acta Phys Pol A. 2016;130:953–955. doi: 10.12693/APhysPolA.130.953
  • Yan MF, Pan W, Bell T, et al. The effect of rare earth catalyst on carburizing kinetics in a sealed quench furnace with endothermic atmosphere. Appl Surf Sci. 2001;173:91–94. doi: 10.1016/S0169-4332(00)00889-8
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;11:6019.
  • Li YS, Tao NR, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008;56:230–241. doi: 10.1016/j.actamat.2007.09.020
  • Zhou L, He W, Luo S, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel. J Alloy Compd. 2016;655:66–70. doi: 10.1016/j.jallcom.2015.06.268
  • Wang Q, Sun Q, Xiao L, et al. Effect of surface nanocrystallization on fatigue behavior of pure titanium. J Mater Eng Perform. 2016;25:241–249. doi: 10.1007/s11665-015-1819-0
  • Rementeria R, Aranda MM, Garcia-Mateo C, et al. Improving wear resistance of steels through nanocrystalline structures obtained by bainitic transformation. Mater Sci Technol. 2016;32:308–312. doi: 10.1080/02670836.2015.1132048
  • Fu T, Zhan Z, Zhang L, et al. Effect of surface mechanical attrition treatment on corrosion resistance of commercial pure titanium. Surf Coat Technol. 2015;280:129–135. doi: 10.1016/j.surfcoat.2015.08.041
  • Wang Y, Yue W, She D, et al. Effects of surface nanocrystallization on tribological properties of 316L stainless steel under MoDTC/ZDDP lubrications. Tribol Int. 2014;79:42–51. doi: 10.1016/j.triboint.2014.05.021
  • Dai S, Zhu Y, Huang Z. Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening. Vacuum. 2016;125:215–221. doi: 10.1016/j.vacuum.2016.01.001
  • Wang ZB, Tao NR, Tong WP, et al. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment. Acta Mater. 2003;51:4319–4329. doi: 10.1016/S1359-6454(03)00260-X
  • Wang HD, Ma GZ, Xu BS, et al. Microstructure and vacuum tribological properties of 1Cr18Ni9Ti steel with combined surface treatments. Surf Coat Technol. 2011;205:3546–3552. doi: 10.1016/j.surfcoat.2010.12.034
  • Lin Y, Lu J, Wang L, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 2006;545:599–5605.
  • Yuan XD, Xu B, Cai YC. A novel RE-chrome-boronizing technology assisted by fast multiple rotation rolling treatment at low temperature. Appl Surf Sci. 2015;357:2285–2289. doi: 10.1016/j.apsusc.2015.09.228
  • Tong WP, Tao NR, Wang ZB, et al. Nitriding iron at lower temperatures. Science. 2003;299:686–688. doi: 10.1126/science.1080216
  • Sun J, Tong WP, Zhang H, et al. Enhanced strength and plasticity of gas nitrided iron by surface mechanical attrition pretreatment. Surf Coat Technol. 2016;286:279–284. doi: 10.1016/j.surfcoat.2015.12.047
  • Schuster J, Bruder E, Müller C. Plasma nitriding of steels with severely plastic deformed surfaces. J Mater Sci. 2012;47:7908–7913. doi: 10.1007/s10853-012-6566-0
  • Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater Sci Eng A. 2004;375–377:38–45. doi: 10.1016/j.msea.2003.10.261
  • Sun Y. Sliding wear behaviour of surface mechanical attrition treated AISI 304 stainless steel. Tribol Int. 2013;57:67–75. doi: 10.1016/j.triboint.2012.07.015
  • Yao Q, Sun J, Zhang G, et al. Enhanced toughness of nitrided layers formed on Ti-6Al-4V alloy via surface mechanical attrition pre-treatment. Vacuum. 2017;142:45–51. doi: 10.1016/j.vacuum.2017.05.004
  • Lacaille V, Peres V, Langlade C, et al. Combination of mechanical and chemical pre-treatments to improve nitriding efficiency on pure iron. Appl Surf Sci. 2017;414:73–81. doi: 10.1016/j.apsusc.2017.04.084
  • Karimi A, Amini S. Steel 7225 surface ultrafine structure and improvement of its mechanical properties using surface nanocrystallization technology by ultrasonic impact. Int J Adv Manuf Technol. 2016;83:1127–1134. doi: 10.1007/s00170-015-7619-8
  • Wang Y, Yang Z, Zhang F, et al. Microstructures and mechanical properties of surface and center of carburizing 23Cr2Ni2Si1Mo steel subjected to low-temperature austempering. Sci Eng A. 2016;670:166–177. doi: 10.1016/j.msea.2016.05.084
  • Trško L, Bokůvka O, Nový F, et al. Effect of severe shot peening on ultra-high-cycle fatigue of a low-alloy steel. Mater Des. 2014;57:103–113. doi: 10.1016/j.matdes.2013.12.035
  • Zabeen S, Preuss M, Withers PJ. Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth. Acta Mater. 2015;83:216–226. doi: 10.1016/j.actamat.2014.09.032
  • Ma GZ, Xu BS, Wang HD, et al. Effects of surface nanocrystallization pretreatment on low-temperature ion sulfurization behavior of 1Cr18Ni9Ti stainless steel. Appl Surf Sci. 2010;257:1204–1210. doi: 10.1016/j.apsusc.2010.08.020
  • Lv Y, Lei L, Sun L. Influence of different combined severe shot peening and laser surface melting treatments on the fatigue performance of 20CrMnTi steel gear. Mater Sci Eng A. 2016;658:77–85. doi: 10.1016/j.msea.2016.01.050
  • Wang Y, Zhang F, Yang Z, et al. Rolling contact fatigue performances of carburized and high-C nanostructured bainitic steels. Materials (Basel). 2016;9:960. doi: 10.3390/ma9120960
  • Ba D, Meng F, Liu X. Friction and wear behaviors of surface nanocrystalline layer prepared on medium manganese surfacing layer under oil lubrication. Tribol Int. 2014;80:210–215. doi: 10.1016/j.triboint.2014.07.007
  • Roy S, Sundararajan S. The effect of heat treatment routes on the retained austenite and tribomechanical properties of carburized AISI 8620 steel. Surf Coat Technol. 2016;308:236–243. doi: 10.1016/j.surfcoat.2016.06.095
  • Feng BP, Qiu YJ, Wang CE, et al. Effect of carbide on contact fatigue life of GCr15 bearing steel. Bearing. 2003;10:30–32.
  • Chakraborty J, Bhattacharjee D, Manna I. Development of ultrafine bainite + martensite duplex microstructure in SAE 52100 bearing steel by prior cold deformation. Scr Mater. 2009:61:604–607. doi: 10.1016/j.scriptamat.2009.05.035
  • Yang H, Wu X, Cao G, et al. Enhanced boronizing kinetics and high temperature wear resistance of H13 steel with boriding treatment assisted by air blast shot peening. Surf Coat Technol. 2016:307;506–516. doi: 10.1016/j.surfcoat.2016.09.029
  • Jeong DH, Gonzalez F, Palumbo G, et al. The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scr Mater. 2001;44:493–499. doi: 10.1016/S1359-6462(00)00625-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.