184
Views
2
CrossRef citations to date
0
Altmetric
Articles

Studies on the mechanical properties of steel–TiB2 composites obtained by high pressure sintering

&
Pages 289-298 | Received 04 May 2017, Accepted 21 Sep 2017, Published online: 24 Oct 2017

References

  • Rao J, Cruz R, Lawson KJ, et al. Carbon and titanium diboride (TiB2) multilayer coating. Diam Relat Mater. 2004;13:2221–2225. doi: 10.1016/j.diamond.2004.06.026
  • Basu B, Raju GB, Suri AK. Processing properties of monolithic TiB2 based materials. Int Mater Rev. 2006;51(6):352–374. doi: 10.1179/174328006X102529
  • Munro RG. Material properties of titanium diboride. J Res Natl Inst Stand Technol. 2000;105:709–720. doi: 10.6028/jres.105.057
  • Mroz C. Titanium diboride. Am Ceram Soc Bull. 1995;75:158–159.
  • Matkovich VI. Boron and refractory borides. Berlin: Springer; 1977.
  • Weimin W, Zhengyi F, Hao W, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J Europ Ceram Soc. 2002;22:1045–1049. doi: 10.1016/S0955-2219(01)00424-1
  • Riedel R. Handbook of ceramic hard materials. Vol. 2. Weinheim: WILEY-VCH Verlag GmbH; 2000. p. 968–990.
  • Shackelford JF, editor. Material science and engineering handbook. 2nd ed. Florida: CRC Press; 1994.
  • Konigshofer R, Furnsinn S, Steinkellner P, et al. Solid-state properties of hot-pressed TiB2 ceramics. Int J Refr Met Hard Mater. 2005;23:350–357. doi: 10.1016/j.ijrmhm.2005.05.006
  • Fedrizzi A, Pellizzari M, Zadra M, et al. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles. Mater Charact. 2013;86:69–79. doi: 10.1016/j.matchar.2013.09.012
  • Nahme H, Lach E, Tarrant A. Mechanical property under high dynamic loading and microstructure evaluation of a TiB2 particle-reinforced stainless steel. J Mater Sci. 2009;44:463–468. doi: 10.1007/s10853-008-3091-2
  • Srivastava AK, Das K. Microstructural and mechanical characterization of in situ TiC and (Ti,W)C-reinforced high manganese austenitic steel matrix composites. Mater Sci Eng A. 2009;516:1–6. doi: 10.1016/j.msea.2009.04.041
  • Demeri MY. Advanced high-strength steels, science, technology, and applications. Materials Park (OH): ASM International; 2013.
  • Gardner L, Insausti A, Ng KT, et al. Elevated temperature material properties of stainless steel alloys. J Constr Steel Res. 2010;66(5):634–647. doi: 10.1016/j.jcsr.2009.12.016
  • McGuire MF. Austenitic stainless steels, stainless steels for design engineers. Materials Park (OH): ASM International; 2008. Chapter 6; p. 69–79.
  • Lamb S, editor. Casti handbook of stainless steel & nickel alloys. Edmonto, Alberta: CASTI Publishing Inc.; 2001.
  • Suárez M, Fernández A, Menéndez JL, et al. Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials, sintering applications. In Tech; 2013. Chapter 13, p. 319–342.
  • Tokita M. Trends in advanced SPS Spark Plasma Sintering systems and technology. J Society Powder Technol, Jpn. 1993;30:790–804. doi: 10.4164/sptj.30.11_790
  • Zhang JX, Liu KG, Zhou ML. Development and applications of spark plasma sintering. Tech Powder Metall. 2002;20(3):129–135 (in Chinese).
  • Eremts MI. High pressure experimental method. Oxford: Oxford University Press; 1996.
  • Jaworska L. Ceramic cutting-edge materials, Tooling Materials, The Institute of Advanced Manufacturing technology, Krakow; 2011.
  • Klimczyk P. SiC-based composites sintered with high pressure method. In: Mukherjee M, editor. Silicon carbide - materials, processing and applications in electronic devices. Rijeka, Croatia: InTech; 2011. Chapter 13; p. 309–334.
  • Sulima I, Boczkal G. Micromechanical, high-temp-erature testing of steel-TiB2 composite sintered by High Pressure-High Temperature method. Mater Sci Eng A. 2015;644:76–78. doi: 10.1016/j.msea.2015.07.047
  • Desu RK, Krishnamurthy HN, Balu A, et al. Mechanical properties of austenitic stainless steel 304L and 316L at elevated temperatures. J Mater Res Technol. 2016;5(1):13–20. doi: 10.1016/j.jmrt.2015.04.001
  • Sulima I, Figiel P, Kurtyka P. Austenitic stainless steel–TiB2 composites obtained by HP-HT method. Compos Theory Pract. 2012;12(4):245–250.
  • Sulima I, Jaworska L, Figiel P. Influence of processing parameters and different content of TiB2 ceramics on the properties of composites sintered by high temperature–high pressure. Arch Metall Mater. 2014;59(1):205–209. doi: 10.2478/amm-2014-0033
  • Cullity BD, Stock SR. Elements of X-ray diffraction. 3rd ed. Upper Saddle River: Prentice Hall; 2003.
  • Goly M, Skrzypek SJ. Surface layer characterisation of bearing rings. Archiv Mat Sci Eng. 2007;28(11):661–664.
  • Talonen J, Hanninen H. Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 2007;55:6108–6118. doi: 10.1016/j.actamat.2007.07.015
  • Staudhammer KP, Murr LE, Hecker SS. Nucleation and evolution of strain-induced martensitic (B.C.C.) embryos and substructure in stainless steel: a transmission electron microscope study. Acta Mater. 1983;31:267–274. doi: 10.1016/0001-6160(83)90103-7
  • Sulima I, Ratuszek W, Zielińska-Lipiec A, et al. Microstructural evolution of 316L austenitic stainless steel with 2%TiB2 addition during the HP-HT sintering. Steel Res Int. 2017;87(9999):1–9.
  • Yuan XL, Xue MA, Chen W, et al. A first-principle study on the phase transition, electronic structure, and mechanical properties of three-phase ZrTi2 alloy under high pressure. Europ Phys J B - Condens Matter. 2016;89(11):1–8.
  • Thomas B, Henry G. Structure and metallography of stainless steel, stainless steel, Les Editions de Physique. Paris, France; 1993.
  • Padilha AF, Rios PR. Decomposition of austenite in austenitic stainless steels. ISIJ Int. 2002;42(4):325–327. doi: 10.2355/isijinternational.42.325
  • Seetharaman V, Krishnan R. Influence of the martensitic transformation on the deformation behaviour of an AISI 316 stainless steel at low temperatures. J Mater Sci. 1981;16:523–530. doi: 10.1007/BF00738646
  • Padilha AF, Plaut RL, Rios PR. Annealing of cold-worked austenitic stainless steels. ISIJ Int. 2003;43(2):135–143. doi: 10.2355/isijinternational.43.135
  • Giles PM, Longenbach MH, Marder AR. High-pressure α⇄ε martensitic transformation in iron. J Appl Phys. 1971;42:4290–4295. doi: 10.1063/1.1659768
  • Taylor RD, Pasternak MP, Jeanloz R. Hysteresis in the high pressure transformation of bcc- to hcp-iron. J Appl Phys. 1991;69:6126–6128. doi: 10.1063/1.348779
  • Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Phys B: Condens Matter. 2003;334(3–4):375–381. doi: 10.1016/S0921-4526(03)00101-7
  • Kakeshita T, Shimizu K. Effects of hydrostatic pressure on martensitic transformations. Mater Trans, JIM. 1997;38(8):668–681. doi: 10.2320/matertrans1989.38.668
  • Kotan K. Microstructural evolution of 316L stainless steels with yttrium addition after mechanical milling and heat treatment. Mater Sci Eng, A. 2015;647:136–143. doi: 10.1016/j.msea.2015.09.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.