520
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Hydrogen-induced change in microstructure and properties of steels: 18Cr10Mn–0.4N vis-à-vis 18Cr10Ni

ORCID Icon, ORCID Icon, , , , ORCID Icon, , & show all
Pages 584-586 | Received 20 Jul 2017, Accepted 21 Sep 2017, Published online: 30 Oct 2017

References

  • Robertson I, Sofronis P, Nagao A, et al. Hydrogen embrittlement understood. Metall Mater Trans A. 2015;46(6):2323–2341. doi: 10.1007/s11661-015-2836-1
  • Shehata MF, Schwarz S, Engelmann HJ, et al. Influence of hydrogen on mechanical properties of nitrogen supersaturated austenitic stainless steels. Mater Sci Technol. 1997;13(12):1016–1022. doi: 10.1179/mst.1997.13.12.1016
  • Michler T, Naumann J. Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels. Int J Hydrog Energy. 2010;35(3):1485–1492. doi: 10.1016/j.ijhydene.2009.10.050
  • Yagodzinskyy Y, Todoshchenko O, Papula S, et al. Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy. Steel Res Int. 2011;82(1):20–25. doi: 10.1002/srin.201000227
  • Yamabe J, Matsuoka S, Murakami Y. Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment. Int J Hydrogen Energy. 2013;38(24):10141–10154. doi: 10.1016/j.ijhydene.2013.05.152
  • Murakami Y, Matsuoka S. Effect of hydrogen on fatigue crack growth of metals. Eng Fract Mech. 2010;77(11):1926–1940. doi: 10.1016/j.engfracmech.2010.04.012
  • Rawers JC. Alloying effects on the microstructure and phase stability of Fe-Cr-Mn steels. J Mater Sci. 2008;43(10):3618–3624. doi: 10.1007/s10853-008-2576-3
  • Werner E. Solid solution and grain size hardening of nitrogen-alloyed austenitic steels. Mater Sci Eng A. 1988;101:93–98. doi: 10.1016/0921-5093(88)90054-8
  • Hughes LA, Somerday BP, Balch DK, et al. Hydrogen compatibility of austenitic stainless steel tubing and orbital tube welds. Int J Hydrogen Energy. 2014;39(35):20585–20590. doi: 10.1016/j.ijhydene.2014.03.229
  • Louthan MR, Caskey GR, Donovan JA, et al. Hydrogen embrittlement of metals. Mater Sci Eng. 1972;10:357–368. doi: 10.1016/0025-5416(72)90109-7
  • Lee TH, Ha HY, Hwang B, et al. Effect of carbon fraction on stacking fault energy of austenitic stainless steels. Metall Mater Trans A. 2012;43A(12):4455–4459. doi: 10.1007/s11661-012-1423-y
  • Yonezawa T, Suzuki K, Ooki S, et al. The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe-Cr-Ni austenitic stainless steel. Metall Mater Trans A. 2013;44(13):5884–5896. doi: 10.1007/s11661-013-1943-0
  • Pontini AE, Hermida JD. X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel. Scr Mater. 1997;37(11):1831–1837. doi: 10.1016/S1359-6462(97)00332-1
  • Mangonon PL, Thomas G. Structure and properties of thermal-mechanically treated 304 stainless steel. Metall Trans. 1970;1(6):1587–1594. doi: 10.1007/BF02642004
  • Wang Y, Li X, Dou D, et al. FE analysis of hydrogen diffusion around a crack tip in an austenitic stainless steel. Int J Hydrogen Energy. 2016;41(14):6053–6063. doi: 10.1016/j.ijhydene.2016.03.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.