192
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effects of heat input on microstructure and mechanical properties of Fe–2Cr–Mo–0.12C steel

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 538-546 | Received 10 Jul 2017, Accepted 11 Oct 2017, Published online: 13 Dec 2017

References

  • Tan JZ, Chao YJ. Effect of service exposure on the mechanical properties of 2.25Cr–1Mo pressure vessel steel in a hot-wall hydrofining reactor. Mater Sci Eng A. 2005;405:214–220. doi: 10.1016/j.msea.2005.05.034
  • Bhadeshia HKDH, Christian JW. Bainite in steels. Metall Trans A. 1990;21:767–797. doi: 10.1007/BF02656561
  • Wang Z-G, Rahka K, Nenonen P, et al. Changes in morphology and composition of carbides during cyclic deformation at room and elevated temperature and their effect on mechanical properties of Cr–Mo–V steel. Acta Metall. 1985;33:2129–2141. doi: 10.1016/0001-6160(85)90195-6
  • Baker RG, Nutting J. Tempering of 2.25Cr-1Mo steel after quenching and normalization. J Iron Steel Inst. 1959;192(7):257–263.
  • Tao P, Zhang C, Yang ZG, et al. Evolution and coarsening of carbides in 2.25Cr-1Mo steel weld metal during high temperature tempering. J Iron Steel Res Int. 2010;17:74–78. doi: 10.1016/S1006-706X(10)60103-3
  • Klueh RL, Swindeman RW. The microstructure and mechanical properties of a modified 2.25Cr-1Mo steel [J]. Metall Trans. 1986;17A(6):1027. doi: 10.1007/BF02661268
  • Yu J, Mcmahon CJ Jr. The effects of composition and carbide precipitation on temper embrittlement of 2.25Cr-1 Mo steel: part I. Effects of P and Sn. Metall Trans A. 1980;11:277–289. doi: 10.1007/BF02660632
  • Yu J, Mcmahon CJ Jr. The effects of composition and carbide precipitation on temper embrittlement of 2.25Cr-1 Mo steel: part II. Effects of Mn and Si. Metall Trans A. 1980;11:291–300. doi: 10.1007/BF02660633
  • Pilling J, Ridley N. Tempering of 2.25 Pct Cr-1 Pct Mo LOW carbon steels. Metall Trans A. 1982;13:557–563. doi: 10.1007/BF02644419
  • Wang QF, Zhang CY, Li RX, et al. Characterization of the microstructures and mechanical properties of 25CrMo48V martensitic steel tempered at different times. Mater Sci Eng A. 2013;559:130–134. doi: 10.1016/j.msea.2012.08.049
  • Yua ZS, Sun F, Zhang JX, et al. Effect of microstructural features on hardness in simulated heat affected zone of an advanced low-alloyed steel. J Alloy Compd. 2017;659:86. doi: 10.1016/j.jallcom.2016.11.327
  • Cao R, Li J, Liu DS, et al. Micromechanism of decrease of impact toughness in coarse-grain heat-affected zone of HSLA steel with increasing welding heat input. Metall Mater Trans A. 2015;46:2999–3014. doi: 10.1007/s11661-015-2916-2
  • Huang G, Wan XL, Wu KM. Effect of Cr content on microstructure and impact toughness in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels. Iron Steel Res Int. 2016;87:1426–1434. doi: 10.1002/srin.201500424
  • Wang CY, Fu RD, Zhou WH, et al. Effect of reheating processes on grain boundary heritance for 2.25Cr-1Mo-0.25V steel. Mater Sci Eng A. 2008;438:1135.
  • Lambert-Perlade A, Gourgues AF, Besson J, et al. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel. Metall Mater Trans A. 2004;35:1039–1053. doi: 10.1007/s11661-004-1007-6
  • De Meester B. The weldability of modern structural TMCP steels. ISIJ Int. 1997;37:537–551. doi: 10.2355/isijinternational.37.537
  • Avazkonandeh-Gharavol MH, Haddad-Sabzevar M, Haerian A. Effect of copper content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal deposits. Mater Des. 2009;30:1902–1912. doi: 10.1016/j.matdes.2008.09.023
  • Rykalin NN. Calculation of heat processes in welding. Moscow: Welding, USSR; 1960.
  • Annual Book of ASTM Standards, ASTM Designation, E8 and E23, vol. 03, Philadelphia, PA; 1995. p. 142.
  • Miranda RM, Fortes MA. Austenite grain growth, microstructure and hardness in the heat-affected zone of a 2.25 Cr-1Mo steel. Mater Sci Eng A. 1989;108:1–8. doi: 10.1016/0921-5093(89)90399-7
  • Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 2006;54:1279–1288. doi: 10.1016/j.actamat.2005.11.001
  • Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 2006;54:5323–5331. doi: 10.1016/j.actamat.2006.07.009
  • Bhadeshia HKDH. Mechanically alloyed metals. Mater Sci Technol. 2000;16:1404. doi: 10.1179/026708300101507361
  • Hu J, Du L-X, Wang J-J, et al. Cooling process and mechanical properties design of hot-rolled low carbon high strength microalloyed steel for automotive wheel usage. Mater Des. 2014;53:332–337. doi: 10.1016/j.matdes.2013.07.036
  • Lan LY, Qiu CL, Zhao DW, et al. Effect of reheat temperature on continuous cooling bainite transformation behavior in low carbon microalloyed steel. J Mater Sci. 2013;48:4356. doi: 10.1007/s10853-013-7251-7
  • Shanmugam S, Ramisetti NK, Misra RDK, et al. Microstructure and high strength–toughness combination of a new 700MPa Nb-microalloyed pipeline steel. Mater Sci Eng A. 2008;478:26–37. doi: 10.1016/j.msea.2007.06.003
  • Yu ZS, Sun F, Zhang JX, et al. Effect of microstructural features on hardness in simulated heat affected zone of an advanced low-alloyed steel. J Alloy Compd. 2017;697:86. doi: 10.1016/j.jallcom.2016.11.327
  • Fujibayashi S, Ishikawa Y, Arakawa Y. Hardness based creep life prediction for 2.25Cr-1Mo superheater tubes in a boiler. ISIJ Int. 2006;46(2):325–334. doi: 10.2355/isijinternational.46.325
  • Zhang XZ, Knott JF. Cleavage fracture in bainitic and martensitic microstructures. Acta Mater. 1999;47(12):3483. doi: 10.1016/S1359-6454(99)00200-1
  • Chakrabarti D, Davis C, Strangwood M. Characterisation of bimodal grain structures in HSLA steels. Mater Charact. 2007;58:423–438. doi: 10.1016/j.matchar.2006.06.014
  • ASTM E23-12c. Standard test methods for notched bar impact testing of metallic materials 1. West Conshohocken, PA; 2012.
  • Lee K-H, Kim M-C, Yang W-J, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn–Mo–Ni low alloy steels. Mater Sci Eng A. 2013;565:158–164. doi: 10.1016/j.msea.2012.12.024
  • Gao JM. Mechanical properties of materials. 1st ed. Wuhan: Wuhan UniTechnol Press; 2004. Chinese.
  • Chatterjee A, Chakrabarti D, Moitra A, et al. Effect of normalization temperatures on ductile–brittle transition temperature of a modified 9Cr–1Mo steel. Mater Sci Eng A. 2014;618:219–231. doi: 10.1016/j.msea.2014.09.021
  • Tamura I. Thermomechanical processing of high-strength low-alloy steels. London: Butterworths; 1988.
  • Belianov I, Marmy P. The effect of low dose irradiation on the impact fracture energy and tensile properties of pure iron and two ferritic martensitic steels. J Nucl Mater. 1998;1259:258.
  • Klueh RL, Alexander DJ. Heat treatment effects on toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated at 365°C. J Nucl Mater. 1992;896:191.
  • Li Y, Huang Q, Wu Y, et al. Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1. J Nucl Mater. 2007;117:367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.