742
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel

, , , &
Pages 547-560 | Received 23 Aug 2017, Accepted 21 Dec 2017, Published online: 10 Jan 2018

References

  • Ji H, Park IJ, Lee SM, et al. The effect of pre-strain on hydrogen embrittlement in 310S stainless steel. J Alloy Compd. 2014;598(3):205–212. doi: 10.1016/j.jallcom.2014.02.038
  • Xu LY, Cheng YF. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution. Corros Sci. 2012;64:145–152. doi: 10.1016/j.corsci.2012.07.012
  • Mukhopadhyay G, Bhattacharya S, Ray KK. Effect of pre-strain on the strength of spot-welds. Mater Des. 2009;30(7):2345–2354. doi: 10.1016/j.matdes.2008.11.006
  • Lee W S, Lin C F. Effects of prestrain and strain rate on dynamic deformation characteristics of 304L stainless steel: part 2 – microstructural study. Mater Sci Technol. 2002;18(8):877–884. doi: 10.1179/026708302225004720
  • Peng Y, Gong J, Jiang Y, et al. The effect of plastic pre-strain on low-temperature surface carburization of AISI 304 austenitic stainless steel. Surf Coat Technol. 2016;304:16–22. doi: 10.1016/j.surfcoat.2016.05.047
  • Shastry CG, Mathew MD, Rao KBS, et al. Tensile deformation behavior of AISI 316L(N) SS. Mater Sci Technol. 2007;23(10):1215–1222. doi: 10.1179/174328407X226581
  • Li D, Ghosh A. Tensile deformation behavior of aluminum alloys at warm forming temperatures. Mat Sci Eng A. 2003;352(1–2):279–286. doi: 10.1016/S0921-5093(02)00915-2
  • Choi M, Hou J, Máthis K, et al. Tensile behavior of hydrogen-charged 316L stainless steel at elevated temperatures. Mat Sci Eng A. 2014;595(5):165–172. doi: 10.1016/j.msea.2013.12.011
  • Lee WS, Yeh GW. The plastic deformation behavior of AISI 4340 alloy steel subjected to high temperature and high strain rate loading conditions. J Mater Process Technol. 1997;71(2):224–234. doi: 10.1016/S0924-0136(97)00079-4
  • Kumar M V, Balasubramanian V, Rao AG. Hot tensile properties and strain hardening behavior of super 304HCu stainless steel. J Mate Res Technol. 2017;6(2):116–122. doi: 10.1016/j.jmrt.2016.05.004
  • Liu F, Dan W J, Zhang W G. Strain hardening model of TWIP steels with manganese content. Mat Sci Eng A. 2016;674:178–185. doi: 10.1016/j.msea.2016.07.115
  • Lin YC, Chen MS, Zhang J. Modeling of flow stress of 42CrMo steel under hot compression. Mat Sci Eng A, 2009, 499(1–2):88–92. doi: 10.1016/j.msea.2007.11.119
  • Zhong J, Xiao YH, Guo C. Constitutive modelling for high temperature behaviour of 12CrNiMoWV martensitic stainless steel. Mater Sci Technol. 2012;28(6):719–726. doi: 10.1179/1743284711Y.0000000129
  • Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics. The Hague: International Ballistics Committee; 1983 (21), p. 541–547.
  • Lin YC, Chen XM, Liu G. A modified Johnson–Cook model for tensile behaviors of typical high-strength alloy steel. Mat Sci Eng A. 2010;527(26):6980–6986. doi: 10.1016/j.msea.2010.07.061
  • Zerilli FJ, Armstrong RW. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys. 1987;61(5):1816–1825. doi: 10.1063/1.338024
  • Zhang H, Wen W, Cui H, et al. A modified Zerilli–Armstrong model for alloy IC10 over a wide range of temperatures and strain rates. Mat Sci Eng A. 2009;527(1–2):328–333. doi: 10.1016/j.msea.2009.08.008
  • Zhou M, Lin YC, Deng J, et al. Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy. Mater Des. 2014;59(6):141–150. doi: 10.1016/j.matdes.2014.02.052
  • Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32(4):1733–1759. doi: 10.1016/j.matdes.2010.11.048
  • He A, Chen L, Hu S, et al. Constitutive analysis to predict high temperature flow stress in 20CrMo continuous casting billet. Mater Des. 2013;46(4):54–60. doi: 10.1016/j.matdes.2012.09.049
  • He A, Xie G, Zhang H, et al. A comparative study on Johnson–Cook, modified Johnson–Cook and Arrhenius- type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel. Mater Des. 2013;52(24):677–685. doi: 10.1016/j.matdes.2013.06.010
  • Liu CY, Zhang RJ, Yan YN. Hot deformation behavior and constitutive modelling of P92 heat resistant steel. Mater Sci Technol. 2011;27(8):1281–1286. doi: 10.1179/026708310X12683158443323
  • Luan J, Sun C, Li X, et al. Constitutive model for AZ31 magnesium alloy based on isothermal compression test. Mater Sci Technol, 2014, 30(2):211–219. doi: 10.1179/1743284713Y.0000000341
  • Acar M, Gungor S, Bouchard PJ, et al. Effect of prior cold work on the mechanical properties of weldments [M]. Exp Appl Mech. 2011;6: 817–826.
  • Auzoux Q, Allais L, Caës C, et al. Effect of pre-strain on creep of three AISI 316 austenitic stainless steels in relation to reheat cracking of weld-affected zones. J Nucl Mater. 2010;400(2):127–137. doi: 10.1016/j.jnucmat.2010.02.021
  • ASTM E8M-04. Standard Test Methods for Tension Testing of Metallic Materials.
  • Huang Z, Miu CJ, Li T, et al. Experimental study on tensile mechanical properties of pre-stretching austenitic stainless steel at room temperature. Press Vess Technol. 2013;6: 7–11.
  • Jonas JJ, Sellars CM, Tegart WJM. Strength and structure under hot-working conditions. Int Mater Rev. 1969;14(1):1–24. doi: 10.1179/095066069790138056
  • Hong SG, Lee SB. The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: influence of dynamic strain aging. Int J Fatigue. 2004;26(8):899–910. doi: 10.1016/j.ijfatigue.2003.12.002
  • Singh KK. Strain hardening behavior of 316L austenitic stainless steel. Mater Sci Technol. 2004;20(9):1134–1142. doi: 10.1179/026708304225022089
  • Eskandari M, Najafizadeh A, Kermanpur A. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing. Mat Sci Eng A. 2009;519(1–2):46–50. doi: 10.1016/j.msea.2009.04.038
  • Shen YF, Li XX, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel. Mat Sci Eng A. 2012;552(34):514–522. doi: 10.1016/j.msea.2012.05.080
  • Atkins E. Elements of X-ray diffraction. Phys Today. 1978;10(3):50–50.
  • De AK, Murdock DC, Mataya MC, et al. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scr Mater. 2004;50(12):1445–1449. doi: 10.1016/j.scriptamat.2004.03.011
  • Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1: 22–31. doi: 10.1016/0001-6160(53)90006-6
  • Shintani T, Murata Y. Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater. 2011;59(11):4314–4322. doi: 10.1016/j.actamat.2011.03.055
  • Dini G, Ueji R, Najafizadeh A, et al. Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mat Sci Eng A. 2010;527(10–11):2759–2763. doi: 10.1016/j.msea.2010.01.033
  • Curtze S, Kuokkala VT. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58(15):5129–5141. doi: 10.1016/j.actamat.2010.05.049
  • Yoo JD, Park KT. Microband-induced plasticity in a high Mn–Al–C light steel. Mat Sci Eng A. 2008;496(1/2):417–424. doi: 10.1016/j.msea.2008.05.042
  • Mandal S, Rakesh V, Sivaprasad PV, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mat Sci Eng A. 2009;500(1–2):114–121. doi: 10.1016/j.msea.2008.09.019
  • Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1944;15(1):22–32. doi: 10.1063/1.1707363
  • Peng J, Zhou C Y, Dai Q, et al. An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures. Mater Des. 2013;50:968–976. doi: 10.1016/j.matdes.2013.04.003
  • Li HY, Li YH, Wang XF, et al. A comparative study on modified Johnson Cook, modified Zerilli–Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel. Mater Des. 2013;49(8):493–501. doi: 10.1016/j.matdes.2012.12.083
  • Li M, Cheng S, Xiong A, et al. Acquiring a novel constitutive equation of a TC6 alloy at high-temperature deformation. J Mater Eng Perform. 2005;14(2):263–266. doi: 10.1361/10599490523364
  • Rokni MR, Zarei-Hanzaki A, Roostaei AA, et al. Constitutive base analysis of a 7075 aluminum alloy during hot compression testing. Mater Des. 2011;32(10):4955–4960. doi: 10.1016/j.matdes.2011.05.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.