220
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Properties of ultrafine-grained Mg-based composites modified by addition of silver and hydroxyapatite

ORCID Icon, , , &
Pages 1096-1103 | Received 02 Aug 2017, Accepted 29 Dec 2017, Published online: 19 Jan 2018

References

  • Song G, Song S. A possible biodegradable magnesium implant material. Adv Eng Mater. 2007;9:98–302. DOI:doi: 10.1002/adem.200600252.
  • Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R. 2014;77:1–34. DOI:doi: 10.1016/j.mser.2014.01.001.
  • Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomath (Sofia). 2005;26:3557–3563. DOI:doi: 10.1016/j.biomaterials.2004.09.049.
  • Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–1018. DOI:10.1016/j.biomaterials.2005.07.037.
  • Zhang B, Hou Y, Wang X, et al. Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Mat Sci Eng C. 2011;31:1667–1673. DOI:10.1016/j.msec.2011.07.015.
  • Salahshoor M, Guo Y. Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Mat. 2012;5:135–155. DOI:10.3390/ma5010135.
  • Avedesian MM, Baker H. ASM specialty handbook, magnesium and magnesium alloy: ASM international. Materials Park (OH): ASM International; 1999.
  • Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res. 2007;83A:703–711. DOI:10.1002/jbm.a.31273.
  • Song G, John DST. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. J Light Met. 2002:21–16. DOI:doi: 10.1016/S1471-5317(02)00008-1.
  • Uddin MS, Hall C, Murphy P. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants – review. Sci Technol Adv Mater. 2015;16:053501. DOI:doi: 10.1088/1468-6996/16/5/053501.
  • Mao L, Yuan G, Niu J, et al. In vitro degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy by hydrofluoric acid treatment. Mat Sci Eng C. 2013;33:242–250. doi: 10.1016/j.msec.2012.08.036
  • Gray-Munro JE, Strong M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31. J Biomed Mater Res A. 2009;90:339–350. DOI:doi: 10.1002/jbm.a.32107.
  • Hiromoto S, Inoue M, Taguchi T, et al. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomat. 2015;11:520–530. DOI:doi: 10.1016/j.actbio.2014.09.026.
  • Wu G, Ding K, Zeng X, et al. Improving corrosion resistance of titanium-coated magnesium alloy by modifying surface characteristics of magnesium alloy prior to titanium coating deposition. Scr Mater. 2009;61:269–272. DOI:doi: 10.1016/j.scriptamat.2009.03.061.
  • Song Y, Zhang S, Li J, et al. Electrodeposition of Ca–P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater. 2010;6:1736–1742. DOI:doi: 10.1016/j.actbio.2009.12.020.
  • Niespodziana K, Jurczyk K, Jakubowicz J, et al. Fabrication and properties of titanium–hydroxyapatite nanocomposites. Mater Chem Phys. 2010;123:160–165. DOI:doi: 10.1016/j.matchemphys.2010.03.076.
  • Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium–hydroxyapatite metal matrix composites. Biomaterials. 2007;28:2163–2174. DOI:10.1016/j.biomaterials.2006.12.027.
  • Kowalski K, Nowak M, Jakubowicz J, et al. The effects of hydroxyapatite addition on the properties of the mechanically alloyed and sintered Mg-RE-Zr alloy. J Mater Eng Perform. 2016;25:4469–4477. DOI:doi: 10.1007/s11665-016-2306-y.
  • Kowalski K, Miklaszewski A, Jurczyk M. Synthesis and properties of bulk Mg-based alloys with ultrafine grained microstructure. Metal Forming. 2016;27:195–210.
  • Gao J, Wu S, Qiao L, et al. Corrosion behavior of Mg and Mg-Zn alloys in simulated body fluid. Trans Nonferrous Met Soc China. 2008;18:588–592. DOI:doi: 10.1016/S1003-6326(08)60102-8.
  • Rakngarm A, Mutoh Y. Electrochemical depositions of calcium phosphate film on commercial pure titanium and Ti–6Al–4V in two types of electrolyte at room temperature. Mater Sci Eng C. 2009;29:275–283. DOI:doi: 10.1016/j.msec.2008.06.028.
  • Açıkgöz Ş, Şevik H, Kurnaz SC. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg–6Al–1Sn–0.3Mn–0.3Ti. J Alloys Compd. 2011;509:7368–7372. DOI:10.1016/j.jallcom.2011.04.112.
  • Hort N, Huang Y, Kainer KU. Intermetallics in magnesium alloys. Adv Eng Mater. 2006;8:235–240. DOI:doi: 10.1002/adem.200500202.
  • Kowalski K, Jurczyk MU, Wirstlein PK, et al. Influence of 45S5 bioglass addition on microstructure and properties of ultrafine grained (Mg-4Y-5.5Dy-0.5Zr) alloy. Mat Sci Eng B. 2017;219:28–36. doi: 10.1016/j.mseb.2017.02.010
  • Kowalski K, Nowak M, Jurczyk M. Mechanical and corrosion properties of magnesium-bioceramic nanocomposites. Arch Metall Mater. 2016;61:1091–1094. DOI:doi: 10.1515/amm-2016-0235.
  • Zhang Y, Blawert C, Tang S, et al. Influence of surface pre-treatment on the deposition and corrosion properties of hydrophobic coatings on a magnesium alloy. Corrosion Science. 2016;112:483–494. DOI:doi: 10.1016/j.corsci.2016.08.013.
  • Thanigai Arul K, Ramana Ramya J, Bhalerao GM, et al. Physicochemical characterization of the superhydrophilic, magnesium and silver ions co-incorporated nanocrystalline hydroxyapatite, synthesized by microwave processing. Ceramics Inter. 2014;40:13771–13779. DOI:doi: 10.1016/j.ceramint.2014.05.088.
  • Clupper D, Hench LL. Bioactive response of Ag-doped tape cast bioglass® 45S5 following heat treatment. J Mat Sci Mater Med. 2001;12:917–921. DOI:10.1023/A:1012836426866.
  • Bellantone M, Williams H, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother. 2001;46:1940–1919. DOI:doi: 10.1128/AAC.46.6.1940-1945.2002.
  • Tie D, Feyerabend F, Müller W-D, et al. Antibacterial biodegradable Mg-Ag alloys. Eur Cells Mat. 2013;25:284–298. DOI:doi: 10.22203/eCM.v025a20.
  • Jurczyk K, Kubicka MM, Ratajczak M, et al. Antibacterial activity of nanostructured Ti-45S5 bioglas-Ag composite against Streptococcus mutans and staphylococcus aureus. Trans Nonferrous Met Soc China. 2016;26:118–125. DOI:doi: 10.1016/S1003-6326(16)64096-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.