934
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Challenges in the formability of the next generation of automotive steel sheets

ORCID Icon, &
Pages 1112-1117 | Received 24 Aug 2017, Accepted 30 Dec 2017, Published online: 17 Jan 2018

References

  • Cooman BCD, Kwon OJ, Chin KG. State-of-the-knowledge on TWIP steel. Mater Sci Technol. 2012;28:513–527. doi: 10.1179/1743284711Y.0000000095
  • Suehiro M, Maki J, Kusumi K, et al. Properties of aluminized steels for hot-forming. 2003 (0148-7191, SAE Technical Paper).
  • Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations. J Mater Process Technol. 2006;177:396–400. doi: 10.1016/j.jmatprotec.2006.04.041
  • Abdulhay B, Bourouga B, Dessain C. Experimental and theoretical study of thermal aspects of the hot stamping process. Appl Therm Eng. 2011;31:674–685. doi: 10.1016/j.applthermaleng.2010.11.010
  • Karbasian H, Tekkaya AE. A review on hot stamping. J Mater Process Technol. 2010;210:2103–2118. doi: 10.1016/j.jmatprotec.2010.07.019
  • George R, Bardelcik A, Worswick M. Hot forming of boron steels using heated and cooled tooling for tailored properties. J Mater Process Technol. 2012;212:2386–2399. doi: 10.1016/j.jmatprotec.2012.06.028
  • Mori K, Okuda Y. Tailor die quenching in hot stamping for producing ultra-high strength steel formed parts having strength distribution. CIRP Ann Manuf Technol. 2010;59:291–294. doi: 10.1016/j.cirp.2010.03.107
  • Yi HL, Du PJ, Wang BG. A new invention of press-hardened steel achieving 1880 MPa tensile strength combined with 16% elongation in hot-stamped parts. Proceedings of 5th International Conference on Hot Sheet Metal Forming of High-performance Steel; 2015; Toronto. p. 725–734.
  • Hosford WF, Caddell RM. Metal forming: mechanics and metallurgy. Cambridge: Cambridge University Press; 2011.
  • Takahashi M. Development of high strength steels for automobiles. Nippon Steel Technology Report. 2003;88:2–6.
  • Wu X, Bahmanpour H, Schmid K. Characterization of mechanically sheared edges of dual phase steels. J Mater Process Technol. 2012;212:1209–1224. doi: 10.1016/j.jmatprotec.2012.01.006
  • Teng Z, Chen X. Edge cracking mechanism in two dual-phase advanced high strength steels. Mater Sci Eng A. 2014;618:645–653. doi: 10.1016/j.msea.2014.06.101
  • Sartkulvanich P, Kroenauer B, Golle R, et al. Finite element analysis of the effect of blanked edge quality upon stretch flanging of AHSS. CIRP Ann Manuf Technol. 2010;59:279–282. doi: 10.1016/j.cirp.2010.03.108
  • Chintamani J, Sriram S. Sheared edge characterization of steel products used for closure panel applications. 2006 (0148-7191, SAE Technical Paper).
  • Speer J, Matlock D, De Cooman B, et al. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003;51:2611–2622. doi: 10.1016/S1359-6454(03)00059-4
  • Edmonds D, He K, Rizzo F, et al. Quenching and partitioning martensite – a novel steel heat treatment. Mater Sci Eng A. 2006;438–440:25–34. doi: 10.1016/j.msea.2006.02.133
  • Speer JG, Edmonds DV, Rizzo FC, et al. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Curr Opin Solid State Mater Sci. 2004;8:219–237. doi: 10.1016/j.cossms.2004.09.003
  • Clarke A, Speer J, Miller M, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment. Acta Mater. 2008;56:16–22. doi: 10.1016/j.actamat.2007.08.051
  • Edmonds D, Speer J. Martensitic steels with carbide free microstructures containing retained austenite. Mater Sci Technol. 2010;26:386–391. doi: 10.1179/026708309X12512744154162
  • Somani MC, Porter D, Karjalainen L, et al. On various aspects of decomposition of austenite in a high-silicon steel during quenching and partitioning. Metall Mater Trans A. 2014;45:1247–1257. doi: 10.1007/s11661-013-2053-8
  • Gao G, Zhang H, Gui X, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: the great potential of ultrafine filmy retained austenite. Acta Mater. 2014;76:425–433. doi: 10.1016/j.actamat.2014.05.055
  • Zhang J, Ding H, Misra RDK. Enhanced strain hardening and microstructural characterization in a low carbon quenching and partitioning steel with partial austenization. Mater Sci Eng A. 2015;636:53–59. doi: 10.1016/j.msea.2015.03.095
  • Sun J, Yu H, Wang S, et al. Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel. Mater Sci Eng A. 2014;596:89–97. doi: 10.1016/j.msea.2013.12.054
  • Mandal G, Ghosh SK, Bera S, et al. Effect of partial and full austenitisation on microstructure and mechanical properties of quenching and partitioning steel. Mater Sci Eng A. 2016;676:56–64. doi: 10.1016/j.msea.2016.08.094
  • Sun J, Yu H. Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process. Mater Sci Eng A. 2013;586:100–107. doi: 10.1016/j.msea.2013.08.021
  • Yan S, Liu X, Liu WJ, et al. Comparative study on microstructure and mechanical properties of a C–Mn–Si steel treated by quenching and partitioning (Q&P) processes after a full and intercritical austenitization. Mater Sci Eng A. 2017;684:261–269. doi: 10.1016/j.msea.2016.12.026
  • Liu R, Sun L, Wang X, et al. Strain rate effect on forming limit diagram for advanced high strength steels. SAE Int J Mater Manuf. 2014;7:583–587. doi: 10.4271/2014-01-0993
  • Wu R, Li W, Zhou S, et al. Effect of retained austenite on the fracture toughness of quenching and partitioning (Q&P)-treated sheet steels. Metall Mater Trans A. 2014;45:1892–1902. doi: 10.1007/s11661-013-2113-0
  • Song C, Yu H, Li L, et al. The stability of retained austenite at different locations during straining of I&Q&P steel. Mater Sci Eng A. 2016;670:326–334. doi: 10.1016/j.msea.2016.06.044
  • Xiong XC, Sun L, Wang JF, et al. Properties assessment of the first industrial coils of low-density duplex δ-TRIP steel. Mater Sci Technol. 2016;32:1403–1408. doi: 10.1080/02670836.2015.1130364
  • Yi HL. Review on δ-transformation-induced plasticity (TRIP) steels with low density: the concept and current progress. JOM. 2014;66:1759–1769. doi: 10.1007/s11837-014-1089-6
  • Yi HL, Chen P, Bhadeshia HKDH. Optimizing the morphology and stability of retained austenite in a δ-TRIP steel. Metall Mater Trans A. 2014;45:3512–3518. doi: 10.1007/s11661-014-2267-4
  • Yi HL, Chen P, Hou ZY, et al. A novel design: partitioning achieved by quenching and tempering (Q–T & P) in an aluminium-added low-density steel. Scr Mater. 2013;68:370–374. doi: 10.1016/j.scriptamat.2012.10.018
  • Yi HL, Lee KY, Bhadeshia HKDH. Extraordinary ductility in Al-bearing – TRIP steel. Proc R Soc A Math Phys Eng Sci. 2011;467:234–243.
  • Yi HL, Lee KY, Bhadeshia HKDH. Mechanical stabilisation of retained austenite in δ-TRIP steel. Mater Sci Eng A. 2011;528:5900–5903. doi: 10.1016/j.msea.2011.03.111
  • Chen P, Wang GD, Xiong XC, et al. Abnormal expansion due to pearlite-to-austenite transformation in high aluminium-added steels. Mater Sci Technol. 2016;32:1678–1682. doi: 10.1080/02670836.2015.1138046
  • Chen P, Xiong XC, Wang GD, et al. The origin of the brittleness of high aluminum pearlite and the method for improving ductility. Scr Mater. 2016;124:42–46. doi: 10.1016/j.scriptamat.2016.06.031
  • Yi HL, Lee KY, Bhadeshia HKDH. Stabilisation of ferrite in hot rolled δ-TRIP steel. Mater Sci Technol. 2011;27:525–529. doi: 10.1179/026708309X12506934374001
  • Luo H, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. Acta Mater. 2011;59:4002–4014. doi: 10.1016/j.actamat.2011.03.025
  • Cao WQ, Wang C, Shi J, et al. Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing. Mater Sci Eng A. 2011;528:6661–6666. doi: 10.1016/j.msea.2011.05.039
  • Merwin MJ. Low-carbon manganese TRIP steels. Mater Sci Forum. 2007;539–543:4327–4332. doi: 10.4028/www.scientific.net/MSF.539-543.4327
  • Wang C, Cao W, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. Mater Sci Eng A. 2013;562:89–95. doi: 10.1016/j.msea.2012.11.044
  • Tsuchiyama T, Inoue T, Tobata J, et al. Microstructure and mechanical properties of a medium manganese steel treated with interrupted quenching and intercritical annealing. Scr Mater. 2016;122:36–39. doi: 10.1016/j.scriptamat.2016.05.019
  • Lee S, De Cooman BC. Tensile behavior of intercritically annealed ultra-fine grained 8% Mn multi-phase steel. Steel Res Int. 2015;86:1170–1178. doi: 10.1002/srin.201500038
  • Suh D-W, Park S-J, Lee T-H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel. Metall Mater Trans A. 2010;41:397–408. doi: 10.1007/s11661-009-0124-7
  • Gibbs PJ, De Moor E, Merwin MJ, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A. 2011;42:3691–3702. doi: 10.1007/s11661-011-0687-y
  • Lee S-J, Lee S, De Cooman BC. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scr Mater. 2011;64:649–652. doi: 10.1016/j.scriptamat.2010.12.012
  • Hu J, Cao W, Huang C, et al. Characterization of microstructures and mechanical properties of cold-rolled medium-Mn steels with different annealing processes. ISIJ Int. 2015;55:2229–2236. doi: 10.2355/isijinternational.ISIJINT-2015-187
  • Suh DW, Ryu JH, Joo MS, et al. Medium-alloy manganese-rich transformation-induced plasticity steels. Metall Mater Trans A. 2013;44:286–293. doi: 10.1007/s11661-012-1402-3
  • Wang XG, Wang L, Huang MX. Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel. Acta Mater. 2017;124:17–29. doi: 10.1016/j.actamat.2016.10.069
  • Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Mater Des. 2015;83:42–48. doi: 10.1016/j.matdes.2015.05.085
  • Han J, Lee S-J, Jung J-G, et al. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Acta Mater. 2014;78:369–377. doi: 10.1016/j.actamat.2014.07.005
  • Lee S, Lee S-J, De Cooman BC. Work hardening behavior of ultrafine-grained Mn transformation-induced plasticity steel. Acta Mater. 2011;59:7546–7553. doi: 10.1016/j.actamat.2011.08.030
  • Lee S, Lee S-J, Santhosh Kumar S, et al. Localized deformation in multiphase, ultra-fine-grained 6 Pct Mn transformation-induced plasticity steel. Metall Mater Trans A. 2011;42:3638–3651. doi: 10.1007/s11661-011-0636-9
  • Ryu JH, Kim JI, Kim HS, et al. Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel. Scr Mater. 2013;68:933–936. doi: 10.1016/j.scriptamat.2013.02.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.