236
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Large load friction stir welding of Mg–6Al–0.4Mn–2Ca magnesium alloy

, , , &
Pages 1118-1130 | Received 24 Sep 2017, Accepted 02 Jan 2018, Published online: 17 Jan 2018

References

  • Munitz A, Cotler C, Stern A, et al. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates. Mater Sci Eng A. 2001;302:68–73. doi: 10.1016/S0921-5093(00)01356-3
  • Sun Z, Pan D. Comparative evaluation of tungsten inert gas and laser welding of AZ31 magnesium alloy. Sci Technol Weld Join. 2002;7:343–351. doi: 10.1179/136217102225006831
  • Mordike BL, Ebert T. Magnesium: properties-applications-potential. Mater Sci Eng A. 2001;302:37–45. doi: 10.1016/S0921-5093(00)01351-4
  • Hong SG, Park SH, Lee CS. Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater 2010;58:5873–5885. doi: 10.1016/j.actamat.2010.07.002
  • Jiang L, Jonas JJ, Luo AA, et al. Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy. Mater Sci Eng A. 2007;445–446:302–309. doi: 10.1016/j.msea.2006.09.069
  • Jain V, Mishra RS. Superplastic behavior and microstructural stability of friction stir processed AZ91C alloy. J Mater Sci. 2013;48:2635–2646. doi: 10.1007/s10853-012-7057-z
  • Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78. doi: 10.1016/j.mser.2005.07.001
  • Thomas WM. International patent application no. 9125978.8, PCT/GB92 patent application. 1991.
  • Cui GR, Ma ZY, Li SX. The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al–Mg alloy. Acta Mater 2009;57:5718–5729. doi: 10.1016/j.actamat.2009.07.065
  • Su JQ, Nelson TW, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 2003;51:713–729. doi: 10.1016/S1359-6454(02)00449-4
  • Hao HL, Ni DR, Huang H, et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded Al–Mg–Er alloy. Mater Sci Eng A. 2013;559:889–896. doi: 10.1016/j.msea.2012.09.041
  • Xu N, Ueji R, Fujii H. Enhanced mechanical properties of 70/30 brass joint by multi-pass friction stir welding with rapid cooling. Sci Technol Weld Join. 2015;20:91–99. doi: 10.1179/1362171814Y.0000000261
  • Xu N, Ueji R, Fujii H. Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding. Mater Sci Eng A. 2014;610:132–138. doi: 10.1016/j.msea.2014.05.037
  • Xu N N, Ueji R, Morisada Y, et al. Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling. Mater Des. 2014;56:20–25. doi: 10.1016/j.matdes.2013.10.076
  • Sun YF, Xu N, Fujii H. The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys. Mater Sci Eng A. 2014;589:228–234. doi: 10.1016/j.msea.2013.09.094
  • Sun YF, Fujii H. Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater Sci Eng A. 2010;527:6879–6886. doi: 10.1016/j.msea.2010.07.030
  • Sabooni S, Karimzadeh F, Enayati MH, et al. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: microstructural and mechanical behavior characterization. Mater Charact. 2015;109:138–151. doi: 10.1016/j.matchar.2015.08.009
  • Wang D, Ni DR, Xiao BL, et al. Microstructural evolution and mechanical properties of friction stir welded joint of Fe–Cr–Mn–Mo–N austenite stainless steel. Mater Des. 2014;64:355–359. doi: 10.1016/j.matdes.2014.07.063
  • Commin L, Dumont M, Masse JE, et al. Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater 2009;57:326–334. doi: 10.1016/j.actamat.2008.09.011
  • Xie GM, Ma ZY, Geng L. Effect of Y addition on microstructure and mechanical properties of friction stir welded ZK60 alloy. J Mater Sci Technol. 2009;25:351–360. doi: 10.1179/174328407X243032
  • Afrin N, Chen DL, Cao X, et al. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy. Mater Sci Eng A. 2008;472:179–186. doi: 10.1016/j.msea.2007.03.018
  • Liu DJ, Xin RL, Sun LY, et al. Influence of sampling design on tensile properties and fracture behavior of friction stir welded magnesium alloys. Mater Sci Eng A. 2013;576:207–216. doi: 10.1016/j.msea.2013.03.037
  • Liu DJ, Xin RL, Zheng X, et al. Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60–AZ31. Mater Sci Eng A. 2013;561:419–426. doi: 10.1016/j.msea.2012.10.052
  • Yang J, Xiao BL, Wang D, et al. Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg–3Al–1Zn alloy. Mater Sci Eng A. 2010;527:708–714. doi: 10.1016/j.msea.2009.09.044
  • Lim S, Kim S, Lee C-G, et al. Tensile behavior of friction-stir-welded AZ31-H24 Mg alloy. Metall Mater Trans A. 2005;36:1609–1612. doi: 10.1007/s11661-005-0252-7
  • Lee CJ, Huang JC, Du XH. Improvement of yield stress of friction-stirred Mg–Al–Zn alloys by subsequent compression. Scr Mater. 2007;56:875–878. doi: 10.1016/j.scriptamat.2007.01.041
  • Xin RL, Liu DJ, Xu ZR, et al. Changes in texture and microstructure of friction stir welded Mg alloy during post-rolling and their effects on mechanical properties. Mater Sci Eng A. 2013;582:178–187. doi: 10.1016/j.msea.2013.06.005
  • Xin RL, Sun LY, Liu DJ, et al. Effect of subsequent tension and annealing on microstructure evolution and strength enhancement of friction stir welded Mg alloys. Mater Sci Eng A. 2014;602:1–10. doi: 10.1016/j.msea.2014.02.062
  • Chen J, Fujii H, Sun YF, et al. Optimization of mechanical properties of fine-grained non-combustive magnesium alloy joint by asymmetrical double-sided friction stir welding. J Mater Process Tech. 2017;242:117–125. doi: 10.1016/j.jmatprotec.2016.11.021
  • Chen J, Ueji R, Fujii H. Double-sided friction-stir welding of magnesium alloy with concave–convex tools for texture control. Mater Des. 2015;76:181–189. doi: 10.1016/j.matdes.2015.03.040
  • Chen J, Fujii H, Sun YF, et al. Fine grained Mg–3Al–1Zn alloy with randomized texture in the double-sided friction stir welded joints. Mater Sci Eng A. 2013;580:83–91. doi: 10.1016/j.msea.2013.05.044
  • Elsayed A, Kondoh K, Imai H, et al. Microstructure and mechanical properties of hot extruded Mg–Al–Mn–Ca alloy produced by rapid solidification powder metallurgy. Mater Des. 2010;31:2444–2453. doi: 10.1016/j.matdes.2009.11.054
  • Liao JS, Hotta M, Mori Y. Improved corrosion resistance of a high-strength Mg–Al–Mn–Ca magnesium alloy made by rapid solidification powder metallurgy. Mater Sci Eng A. 2012;544:10–20. doi: 10.1016/j.msea.2012.02.046
  • Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperatures. Mater Lett. 2005;59:1511–1515. doi: 10.1016/j.matlet.2005.01.012
  • Takayama Y, Szpunar JA. Stored energy and Taylor factor relation in an Al–Mg–Mn alloy sheet worked by continuous cyclic bending. Mater Trans. 2004;45:2316–2325. doi: 10.2320/matertrans.45.2316
  • Barnett MR. A Taylor model based description of the proof stress of magnesium AZ31 during hot working, metall. Mater Trans A. 2003;34A:1799–1806. doi: 10.1007/s11661-003-0146-5
  • Suhuddin UFHR, Mironov S, Sato YS, et al. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Mater 2009;57:5406–5418. doi: 10.1016/j.actamat.2009.07.041
  • Hughes DA, Hansen N. High angle boundaries formed by grain subdivision mechanisms. Acta Mater 1997;45:3871–3886. doi: 10.1016/S1359-6454(97)00027-X
  • Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. 2nd ed.Oxford: Pergamon Press; 2004.
  • Fonda RW, Knipling KE. Texture development in friction stir welds. Sci Technol Weld Join. 2011;16:288–294. doi: 10.1179/1362171811Y.0000000010
  • Montheillet F, Gilormini P, Jonas JJ. Relation between axial stress and texture development during torsion testing. Acta Metall 1985;33:705–717. doi: 10.1016/0001-6160(85)90035-5
  • Mironov S, Sato YS, Kokawa H. Development of grain structure during friction stir welding of pure titanium. Acta Mater 2009;57:4519–4528. doi: 10.1016/j.actamat.2009.06.020
  • Ma Q, Li B, Oppedal AL, et al. Anomalous strain rate sensitivity of {10-12}<10-1-1 >  twinning in a magnesium alloy at high temperature. Metall Mat Trans A. 2013;559:314–318.
  • Yu ZZ, Choo H, Feng ZL, et al. Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy. Scr Mater. 2010;63:1112–1115. doi: 10.1016/j.scriptamat.2010.08.016
  • Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–426. doi: 10.1126/science.1092905
  • Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352. doi: 10.1126/science.1159610
  • An XH, Wu SD, Zhang ZF, et al. Enhanced strength–ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scr Mater. 2012;66:227–230. doi: 10.1016/j.scriptamat.2011.10.043
  • Bhadeshia HKDH. Twinning-induced plasticity steels. Scr Mater. 2012;66:955. doi: 10.1016/j.scriptamat.2012.04.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.