202
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Microstructure, mechanical properties and yield asymmetry of Mg–4Al–2Sn–xY alloys

, &
Pages 1131-1141 | Received 04 Oct 2017, Accepted 03 Jan 2018, Published online: 17 Jan 2018

References

  • Jiang MG, Xu C, Nakata T, et al. Development of dilute Mg–Zn–Ca–Mn alloy with high performance via extrusion. J Alloy Compd. 2016;668:13–21. doi: 10.1016/j.jallcom.2016.01.195
  • Xiao W, Jia S, Wang L, et al. Effects of Sn content on the microstructure and mechanical properties of Mg–7Zn–5Al based alloys. Mater Sci Eng A. 2010;527(26):7002–7007. doi: 10.1016/j.msea.2010.07.019
  • Zheng L, Nie H, Liang W, et al. Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys. J Magnesium Alloy. 2016;4(2):115–122. doi: 10.1016/j.jma.2016.04.002
  • Jandaghi MR, Pouraliakbar H, Khalaj G, et al. On the effect of non-isothermal annealing and multi-directional forging on the microstructural evolutions and correlated mechanical and electrical characteristics of hot-deformed Al–Mg alloy. Mater Sci Eng A. 2016;657:431–440. doi: 10.1016/j.msea.2016.01.056
  • Pouraliakbar H, Pakbaz M, Firooz S, et al. Study on the dynamic and static softening phenomena in Al–6Mg alloy during two-stage deformation through interrupted hot compression test. Measurement. 2016;77:50–53. doi: 10.1016/j.measurement.2015.08.033
  • Lee SI, Kim JS, Park SJ, et al. Evolution of tension and compression asymmetry of extruded Mg–Al–Sn–Zn alloy with respect to forming temperatures. Mater Des. 2016;110:510–518. doi: 10.1016/j.matdes.2016.08.026
  • Park SH, Jung JG, Kim YM, et al. A new high-strength extruded Mg–8Al–4Sn–2Zn alloy. Mater Lett. 2015;139(139):35–38. doi: 10.1016/j.matlet.2014.10.033
  • Qu H, Liu WD, Zhou G, et al. Relationship between the valence electron structures of precipitated phases and thermostability of Mg–Al–Si alloy. Adv Mat Res. 2011;183–185:2068–2072. doi: 10.4028/www.scientific.net/AMR.183-185.2068
  • Li ZT, Zhang XD, Zheng MY, et al. Effect of Ca/Al ratio on microstructure and mechanical properties of Mg–Al–Ca–Mn alloys. Mater Sci Eng A. 2016;682:423–432. doi: 10.1016/j.msea.2016.11.026
  • Kavyani M, Ebrahimi GR, Sanjari M, et al. Texture evaluation in warm deformation of an extruded Mg–6Al–3Zn alloy. J Magnesium Alloy. 2016;4(2):89–98. doi: 10.1016/j.jma.2016.05.002
  • Zhang H, Liu Y, Fan J, et al. Microstructure evolution and mechanical properties of twinned AZ31 alloy plates at lower elevated temperature. J Alloy Compd. 2014;615(9):687–692. doi: 10.1016/j.jallcom.2014.07.045
  • Gibson M, Fang XY, Bettles C, et al. The effect of precipitate state on the creep performance of Mg–Sn alloys. Scr Mater. 2010;63(8):899–902. doi: 10.1016/j.scriptamat.2010.07.002
  • Hu G, Xing B, Huang F, et al. Effect of Y addition on the microstructures and mechanical properties of as-aged Mg–6Zn–1Mn–4Sn (wt%) alloy. J Alloy Compd. 2016;689:326–332. doi: 10.1016/j.jallcom.2016.06.216
  • Chang LL, Tang H, Guo J. Strengthening effect of nano and micro-sized precipitates in the hot-extruded Mg–5Sn–3Zn alloys with Ca addition. J Alloy Compd. 2017;703:552–559. doi: 10.1016/j.jallcom.2017.01.274
  • Nam ND. Corrosion behavior of Mg–5Al based magnesium alloy with 1 wt.% Sn, Mn and Zn additions in 3.5 wt.% NaCl solution. J Magnesium Alloy. 2014;2:190–195. doi: 10.1016/j.jma.2014.06.002
  • Elsayed FR, Sasaki TT, Ohkubo T, et al. Effect of extrusion conditions on microstructure and mechanical properties of microalloyed Mg–Sn–Al–Zn alloys. Mater Sci Eng A. 2013;588(24):318–328. doi: 10.1016/j.msea.2013.09.050
  • Wang J, Zhang X, Lu X, et al. Microstructure, texture and mechanical properties of hot-rolled Mg–4Al–2Sn–0.5Y–0.4Nd alloy. J Magnesium Alloy. 2016;4(3):207–213. doi: 10.1016/j.jma.2016.07.004
  • Hu Y, Zhang C, Meng W, et al. Microstructure, mechanical and corrosion properties of Mg–4Al- 2Sn–xY–0.4Mn alloys. J Alloys Compd. 2017;727:491–500. doi: 10.1016/j.jallcom.2017.08.171
  • Wang HY, Zhang N, Wang C, et al. First-principles study of the generalized stacking fault energy in Mg–3Al–3Sn alloy. Scr Mater. 2011;65(8):723–726. doi: 10.1016/j.scriptamat.2011.07.016
  • Wang H-Y, Nan X-L, Zhang N, et al. Strong strain hardening ability in an as-cast Mg–3Al–3Sn alloy. Mater Chem Phys. 2012;132(2–3):248–252. doi: 10.1016/j.matchemphys.2011.12.036
  • She J, Pan F, Zhang J, et al. Microstructure and mechanical properties of Mg–Al–Sn extruded alloys. J Alloys Compd. 2016;657:893–905. doi: 10.1016/j.jallcom.2015.10.146
  • Sasaki TT, Elsayed FR, Nakata T, et al. Strong and ductile heat-treatable Mg–Sn–Zn–Al wrought alloys. Acta Mater. 2015;99:176–186. doi: 10.1016/j.actamat.2015.06.060
  • Jandaghi MR, Pouraliakbar H, Khalaj G, et al. Study on the post-rolling direction of severely plastic deformed aluminum–manganese–silicon alloy. Arch Civil Mech Eng. 2016;16(4):876–887. doi: 10.1016/j.acme.2016.06.005
  • Pouraliakbar H, Jandaghi MR, Baygi SJM, et al. Microanalysis of crystallographic characteristics and structural transformations in SPDed Al, Mn, Si alloy by dual-straining. J Alloys Compd. 2017;696:1189–1198. doi: 10.1016/j.jallcom.2016.12.086
  • Yu H, Li C, Xin Y, et al. The mechanism for the high dependence of the Hall–Petch slope for twinning/slip on texture in Mg alloys. Acta Mater. 2017;128:313–326. doi: 10.1016/j.actamat.2017.02.044
  • Yuan W, Panigrahi SK, Su J-Q, et al. Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy. Scr Mater. 2011;65:994–997. doi: 10.1016/j.scriptamat.2011.08.028
  • Pouraliakbar H, Jandaghi MR, Khalaj G. Constrained groove pressing and subsequent annealing of Al–Mn–Si alloy: microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance. Mater Des. 2017;124:34–46. doi: 10.1016/j.matdes.2017.03.053
  • Jandaghi MR, Pouraliakbar H. Study on the effect of post-annealing on the microstructural evolutions and mechanical properties of rolled CGPed aluminum–manganese–silicon alloy. Mater Sci Eng A. 2017;679:493–503. doi: 10.1016/j.msea.2016.10.054
  • Jain J, Poole WJ, Sinclair CW, et al. Reducing the tension–compression yield asymmetry in a Mg–8Al–0.5Zn alloy via precipitation. Scr Mater. 2010;62(5):301–304. doi: 10.1016/j.scriptamat.2009.11.024
  • Liu Q. Research progress on plastic deformation mechanism of mg alloys. Acta Metall Sin. 2010;46(11):1458–1472. doi: 10.3724/SP.J.1037.2010.01458
  • Kim B, Baek SM, Hu YJ, et al. Grain refinement and reduced yield asymmetry of extruded Mg–5Sn–1Zn alloy by Al addition. J Alloys Compd. 2016;660:304–309. doi: 10.1016/j.jallcom.2015.11.133
  • Park SH, Lee JH, Moon BG, et al. Tension–compression yield asymmetry in as-cast magnesium alloy. J Alloys Compd. 2014;617:277–280. doi: 10.1016/j.jallcom.2014.07.164
  • Sadeghi A, Shook S, Pekguleryuz M. Yield asymmetry and fracture behavior of Mg–3%Al–1%Zn–(0–1) % Sr alloys extruded at elevated temperatures. Mater Sci Eng A. 2011;528(25–26):7529–7536. doi: 10.1016/j.msea.2011.06.060
  • Yin SM, Wang CH, Diao YD, et al. Influence of grain size and texture on the yield asymmetry of Mg–3Al–1Zn alloy. J Mater Sci Tech. 2011;27(1):29–34. doi: 10.1016/S1005-0302(11)60021-2
  • Xu S, Liu T, Chen H, et al. Reducing the tension–compression yield asymmetry in a hot-rolled Mg–3Al–1Zn alloy via multidirectional pre-compression. Mat Sci Eng A Struct Mat Prop Microst Proces. 2013;565(5):96–101. doi: 10.1016/j.msea.2012.11.127
  • Lv C, Liu T, Liu D, et al. Effect of heat treatment on tension–compression yield asymmetry of AZ80 magnesium alloy. Mater Des. 2012;33(1):529–533. doi: 10.1016/j.matdes.2011.04.060
  • Zhang D, Wen H, Kumar MA, et al. Yield symmetry and reduced strength differential in Mg–2.5Y alloy. Acta Mater. 2016;120:75–85. doi: 10.1016/j.actamat.2016.08.037
  • Song B, Xin RL, Sun LY, et al. Influencing factors and controlling methods of tension-compression asymmetry in magnesium alloys. Chinese J Nonferr Metal. 2014;24(8):1941–1952.
  • Robson JD, Twier A M, Lorimer GW, et al. Effect of extrusion conditions on microstructure, texture, and yield asymmetry in Mg–6Y–7Gd–0.5 wt% Zr alloy. Mater Sci Eng A. 2011;528(24):7247–7256. doi: 10.1016/j.msea.2011.05.075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.