391
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Twins and twin-related domains in a grain boundary-engineered 304 stainless steel

ORCID Icon, , , , &
Pages 561-571 | Received 24 Oct 2017, Accepted 21 Jan 2018, Published online: 05 Feb 2018

References

  • Watanabe T. Grain boundary engineering: historical perspective and future prospects. J Mater Sci. 2011;46:4095–4115. doi: 10.1007/s10853-011-5393-z
  • Randle V. Twinning-related grain boundary engineering. Acta Mater. 2004;52:4067–4081. doi: 10.1016/j.actamat.2004.05.031
  • Lehockey EM, Limoges D, Palumbo G, et al. On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering. J Power Sources. 1999;78:79–83. doi: 10.1016/S0378-7753(99)00015-4
  • Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scripta Metall Mater. 1995;33:1387–1392. doi: 10.1016/0956-716X(95)00420-Z
  • Deepak K, Mandal S, Athreya CN, et al. Implication of grain boundary engineering on high temperature hot corrosion of alloy 617. Corros Sci. 2016;106:293–297. doi: 10.1016/j.corsci.2016.01.019
  • Hu CL, Xi S, Li H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control. Corros Sci. 2011;53:1880–1886. doi: 10.1016/j.corsci.2011.02.005
  • West EA, Was GS. IGSCC of grain boundary engineered 316L and 690 in supercritical water. J Nucl Mater. 2009;392:264–271. doi: 10.1016/j.jnucmat.2009.03.008
  • Gertsman VY, Bruemmer SM. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater. 2001;49:1589–1598. doi: 10.1016/S1359-6454(01)00064-7
  • Liu T, Xia S, Bai Q, Zhou B, et al. Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water. J Nucl Mater. 2018;498:290–299. doi: 10.1016/j.jnucmat.2017.10.004
  • Lehockey EM, Palumbo G. On the creep behaviour of grain boundary engineered nickel 1. Mat Sci Eng A. 1997;237:168–172. doi: 10.1016/S0921-5093(97)00126-3
  • Alexandreanu B, Was GS. The role of stress in the efficacy of coincident site lattice boundaries in improving creep and stress corrosion cracking. Scripta Mater. 2006;54:1047–1052. doi: 10.1016/j.scriptamat.2005.11.051
  • Watanabe T, Fujii H, Oikawa H, et al. Grain boundaries in rapidly solidified and annealed Fe-6.5 mass% Si polycrystalline ribbons with high ductility. Acta Metall. 1989;37:941–952. doi: 10.1016/0001-6160(89)90021-7
  • Kumar M, Schwartz AJ, King WE. Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials. Acta Mater. 2002;50:2599–2612. doi: 10.1016/S1359-6454(02)00090-3
  • Liu TG, Xia S, Li H, et al. The highly twinned grain boundary network formation during grain boundary engineering. Mater Lett. 2014;133:97–100. doi: 10.1016/j.matlet.2014.06.166
  • Watanabe T. Approach to grain boundary design for strong and ductile polycrystals. Res Mech. 1984;11:47–84.
  • Masoumi M, Santos LPM, Bastos IN, et al. Texture and grain boundary study in high strength Fe–18Ni–Co steel related to hydrogen embrittlement. Mater Design. 2016;91:90–97. doi: 10.1016/j.matdes.2015.11.093
  • Das A. Grain boundary engineering: fatigue fracture. Philos Mag. 2017;97:867–916. doi: 10.1080/14786435.2017.1285072
  • Saylor D, El-Dasher B, Adams B, et al. Measuring the five-parameter grain-boundary distribution from observations of planar sections. Metall Mat Trans A. 2004;35:1981–1989. doi: 10.1007/s11661-004-0147-z
  • Michiuchi M, Kokawa H, Wang ZJ, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel. Acta Mater. 2006;54:5179–5184. doi: 10.1016/j.actamat.2006.06.030
  • Kobayashi S, Kobayashi R, Watanabe T. Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel. Acta Mater. 2016;102:397–405. doi: 10.1016/j.actamat.2015.08.075
  • Tokita S, Kokawa H, Sato YS, et al. In situ EBSD observation of grain boundary character distribution evolution during thermomechanical process used for grain boundary engineering of 304 austenitic stainless steel. Mater Charact. 2017;131:31–38. doi: 10.1016/j.matchar.2017.06.032
  • Liu TG, Xia S, Li H, et al. Effect of initial grain sizes on the grain boundary network during grain boundary engineering in Alloy 690. J Mater Res. 2013;28:1165–1176. doi: 10.1557/jmr.2013.37
  • Liu TG, Xia S, Li H, et al. Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy. Mater Charact. 2014;91:89–100. doi: 10.1016/j.matchar.2014.02.011
  • Cao W, Xia S, Bai Q, et al. Effects of initial microstructure on the grain boundary network during grain boundary engineering in Hastelloy N alloy. J Alloy Compd. 2017;704:724–733. doi: 10.1016/j.jallcom.2017.02.009
  • Telang A, Gill AS, Kumar M, et al. Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion cracking. Acta Mater. 2016;113:180–193. doi: 10.1016/j.actamat.2016.05.009
  • Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 1999;47:4187–4196. doi: 10.1016/S1359-6454(99)00277-3
  • Lind J, Li SF, Kumar M. Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials. Acta Mater. 2016;114:43–53. doi: 10.1016/j.actamat.2016.03.002
  • Liu T, Xia S, Wang B, et al. Grain orientation statistics of grain-clusters and the propensity of multiple-twinning during grain boundary engineering. Mater Design. 2016;112:442–448. doi: 10.1016/j.matdes.2016.09.079
  • Tsurekawa S, Nakamichi S, Watanabe T. Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel. Acta Mater. 2006;54:3617–3626. doi: 10.1016/j.actamat.2006.03.048
  • Telang A, Gill AS, Tammana D, et al. Surface grain boundary engineering of Alloy 600 for improved resistance to stress corrosion cracking. Mater Sci Eng A. 2015;648:280–288. doi: 10.1016/j.msea.2015.09.074
  • Randle V. Grain boundary engineering: an overview after 25 years. Mater Sci Tech. 2010;26:253–261. doi: 10.1179/026708309X12601952777747
  • Cayron C. Quantification of multiple twinning in face centred cubic materials. Acta Mater. 2011;59:252–262. doi: 10.1016/j.actamat.2010.09.029
  • Bober DB, Lind J, Mulay RP, et al. The formation and characterization of large twin related domains. Acta Mater. 2017;129:500–509. doi: 10.1016/j.actamat.2017.02.051
  • Xia S, Zhou BX, Chen WJ. Grain cluster microstructure and grain boundary character distribution in alloy 690. Metall Mater Trans A. 2009;40:3016–3030. doi: 10.1007/s11661-009-0035-7
  • Liu T, Xia S, Zhou B, et al. Three-dimensional characteristics of the grain boundary networks of conventional and grain boundary engineered 316L stainless steel. Mater Charact. 2017;133:60–69. doi: 10.1016/j.matchar.2017.09.026
  • Reed BW, Kumar M, Minich RW, et al. Fracture roughness scaling and its correlation with grain boundary network structure. Acta Mater. 2008;56:3278–3289. doi: 10.1016/j.actamat.2008.03.019
  • Gertsman VY, Henager CH. Grain boundary junctions in microstructure generated by multiple twinning. Interface Science. 2003;11:403–415. doi: 10.1023/A:1026191810431
  • Meyers MA, Murr LE. A model for the formation of annealing twins in F.C.C. metals and alloys. Acta Metall. 1978;26:951–962. doi: 10.1016/0001-6160(78)90046-9
  • Mahajan S, Pande CS, Imam MA, et al. Formation of annealing twins in f.c.c. crystals. Acta Mater. 1997;45:2633–2638. doi: 10.1016/S1359-6454(96)00336-9
  • Bystrzycki J, Przetakiewicz W. 3-Dimensional reconstruction of annealing twins shape in FCC metals by serial sectioning. Scripta Metall Mater. 1992;27:893–896. doi: 10.1016/0956-716X(92)90412-8
  • Holm EA, Duxbury PM. Three-dimensional materials science. Scripta Mater. 2006;54:1035–1040. doi: 10.1016/j.scriptamat.2005.11.048
  • Bastos A, Zaefferer S, Raabe D. Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co–Ni films. J Microsc. 2008;230:487–498. doi: 10.1111/j.1365-2818.2008.02008.x
  • Zaefferer S, Wright SI, Raabe D. Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructure characterization. Metall Mater Trans A. 2008;39:374–389. doi: 10.1007/s11661-007-9418-9
  • Dillon S, Lee S, Rollett A, et al. Measuring the five parameter grain boundary character distribution from three-dimensional orientation maps. Microsc Microanal. 2008;14:978–979. doi: 10.1017/S1431927608085139
  • Xu W, Ferry M, Mateescu N, et al. Techniques for generating 3-D EBSD microstructures by FIB tomography. Mater Character. 2007;58:961–967. doi: 10.1016/j.matchar.2006.10.001
  • Kral MV, Spanos G. Three-dimensional analysis of proeutectoid cementite precipitates. Acta Mater. 1999;47:711–724. doi: 10.1016/S1359-6454(98)00321-8
  • Rowenhorst DJ, Gupta A, Feng CR, et al. 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scripta Mater. 2006;55:11–16. doi: 10.1016/j.scriptamat.2005.12.061
  • Lewis AC, Bingert JF, Rowenhorst DJ, et al. Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mat Sci Eng A. 2006;418:11–18. doi: 10.1016/j.msea.2005.09.088
  • Palumbo G, Aust KT. Structure-dependence of intergranular corrosion in high purity nickel. Acta Metall Mater. 1990;38:2343–2352. doi: 10.1016/0956-7151(90)90101-L
  • Groeber M, Jackson M. DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov. 2014;3:1–17. doi: 10.1186/2193-9772-3-5
  • Ayachit U. The paraview guide: a parallel visualization application. Clifton Park, NY, USA: Kitware; 2015. p. 1–276.
  • Randle V. The effect of twinning interactions up to the seventh generation on the evolution of microstructure. J Mater Sci. 2006;41:653–660. doi: 10.1007/s10853-006-6481-3
  • Miyazawa K, Iwasaki Y, Ito K, et al. Combination rule of Σ values at triple junctions in cubic polycrystals. Acta Crystallogr A. 1996;52:787–796. doi: 10.1107/S0108767396005934
  • Schuh CA, Kumar M, King WE. Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 2003;51:687–700. doi: 10.1016/S1359-6454(02)00447-0
  • Rohrer GS, Randle V, Kim C-S, et al. Changes in the five-parameter grain boundary character distribution in α-brass brought about by iterative thermomechanical processing. Acta Mater. 2006;54:4489–4502. doi: 10.1016/j.actamat.2006.05.035
  • Doni EG, Bleris GL. Study of special triple junctions and faceted boundaries by means of the CSL model. Phys Status Solidi A. 1988;110:383–395. doi: 10.1002/pssa.2211100208
  • Bhandari Y, Sarkar S, Groeber M, et al. 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comp Mater Sci. 2007;41:222–235. doi: 10.1016/j.commatsci.2007.04.007
  • Groeber M, Ghosh S, Uchic MD, et al. A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater. 2008;56:1257–1273. doi: 10.1016/j.actamat.2007.11.041
  • Ullah A, Liu GQ, Luan JH, et al. Three-dimensional visualization and quantitative characterization of grains in polycrystalline iron. Mater Charact. 2014;91:65–75. doi: 10.1016/j.matchar.2014.02.009
  • Gertsman VY. Coincidence site lattice theory of triple junctions and quadruple points. In: Ankem S., Pande C.S., Ovid'ko I., editors. Science and technology of interfaces. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2002. p. 387–398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.