493
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Structure and strength of sub-100 nm lamellar structures in cold-drawn pearlitic steel wire

ORCID Icon, , &
Pages 794-808 | Received 04 Jan 2018, Accepted 09 Feb 2018, Published online: 05 Mar 2018

References

  • National Research Council. Materials and man’s needs: materials science and engineering -- volume I, The history, scope, and nature of materials science and engineering. Washington (DC): The National Academies Press; 1975.
  • Tsuji N, Maki T. Enhanced structural refinement by combining phase transformation and plastic deformation in steels. Scr Mater. 2009;60:1044–1049. doi: 10.1016/j.scriptamat.2009.02.028
  • Christian JW. The theory of transformations in Metals and Alloys. Oxford: Elsevier Science Ltd; 2002.
  • Bhadeshia HKDH. Nanostructured bainite. Proc R Soc A. 2010;466:3–18. doi: 10.1098/rspa.2009.0407
  • Percy J. On steel wire of high tenacity. J Iron Steel Inst. 1886;29:62–80.
  • Tarui T, Maruyama N, Takahashi J, et al. Microstructure control and strengthening of high-carbon steel wires. Nippon Technical Report. 2005;91:56–61.
  • Li Y, Raabe D, Herbig M, et al. Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys Rev Lett. 2014;113:106104. doi: 10.1103/PhysRevLett.113.106104
  • Embury JD, Fisher RM. The structure and properties of drawn pearlite. Acta Metall. 1966;14:147–159. doi: 10.1016/0001-6160(66)90296-3
  • Zhang X, Godfrey A, Huang X, et al. Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Mater. 2011;59:3422–3430. doi: 10.1016/j.actamat.2011.02.017
  • Li YJ, Choi P, Borchers C, et al. Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater. 2011;59:3965–3977. doi: 10.1016/j.actamat.2011.03.022
  • Zhang X, Hansen N, Godfrey A, et al. Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire. Acta Mater. 2016;114:176–183. doi: 10.1016/j.actamat.2016.04.040
  • Borchers C, Kirchheim R. Cold-drawn pearlitic steel wires. Prog Mater Sci. 2016;82:405–444. doi: 10.1016/j.pmatsci.2016.06.001
  • Zubov VY. Patenting of steel wire. Met Sci Heat Treat. 1972;14:793–800. doi: 10.1007/BF00652032
  • Ridley N. A review of the data on the interlamellar spacing of pearlite. Metall Trans. 1984;15A:1019–1036. doi: 10.1007/BF02644694
  • Zhang X, Godfrey A, Hansen N, et al. Hierarchical structures in cold-drawn pearlitic steel wire. Acta Mater. 2013;61:4898–4909. doi: 10.1016/j.actamat.2013.04.057
  • Zhang X. Quantitative investigation of microstructural evolution during the cold wire-drawing of a pearlitic steel wire and its relationship with mechanical properties [PhD thesis]. Beijing: Tsinghua Univ.;2009.
  • Langford G. A study of the deformation of patented steel wire. Metall Trans. 1970;1:465–477. doi: 10.1007/BF02811557
  • Langford G. Deformation of pearlite. Metall Trans. 1977;8A:861–875. doi: 10.1007/BF02661567
  • Zelin M. Microstructure evolution in pearlitic steels during wire drawing. Acta Mater. 2002;50:4431–4447. doi: 10.1016/S1359-6454(02)00281-1
  • Zhang XD, Godfrey A, Huang X, et al. Characterization of the microstructure in drawn pearlitic steel wires. Proceedings of the 30th Risø international symposium on materials science: nanostructured metals: fundamentals to applications. Risø: DTU; 2009. p.409–416.
  • Zhang X, Godfrey A, Hansen N, et al. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing. Mater Charact. 2010;61:65–72. doi: 10.1016/j.matchar.2009.10.007
  • Zhang XD, Godfrey A, Liu W, et al. Study on dislocation slips in ferrite and deformation of cementite in cold drawn pearlitic steel wires from medium to high strain. Mater Sci Technol. 2011;27:562–567. doi: 10.1179/026708309X12512744154405
  • Zhang X, Hansen N, Godfrey A, et al. Microstructural evolution, strengthening mechanisms and strength structure relationship in cold-drawn pearlitic steel wire. Proceedings of the 33rd Risø international symposium on materials science;Risø: Nanometals: Status and Perspectives; 2012. pp. 407–416.
  • Zhang X, Hansen N, Godfrey A, et al. Hierarchical structures and strength in cold-drawn pearlitic steel wire. Proceedings of the 35rd Risø international symposium on materials science: new frontiers of nanometals;Risø; 2014. pp. 153–170.
  • Guo N, Luan B, Wang B, et al. Microstructure and texture evolution in fully pearlitic steel during wire drawing. Sci China Technol Sci. 2013;56:1139–1146. doi: 10.1007/s11431-013-5184-7
  • Zhou L, Hu X, Ma C, et al. Effect of pearlitic lamella orientation on deformation of pearlite steel wire during cold drawing. Acta Metall Sin. 2015;51:897–903.
  • Kumar P, Gurao NP, Haldar A, et al. Progressive changes in the microstructure and texture in pearlitic steel during wire drawing. ISIJ Int. 2011;51:679–684. doi: 10.2355/isijinternational.51.679
  • Zhao T, Zhang G, Zhang S, et al. Influence of lamellar direction in pearlitic steel wire on mechanical properties and microstructure evolution. J Iron Steel Res Int. 2016;23:1290–1296. doi: 10.1016/S1006-706X(16)30190-X
  • Toribio J, Ovejero E. Microstructure evolution in a pearlitic steel subjected to progressive plastic deformation. Mater Sci Eng A. 1997;234-236:579–582. doi: 10.1016/S0921-5093(97)00231-1
  • Hosford WF. Microstructural changes during deformation of [110] fiber textured metals. Trans Met Soc AIME. 1964;230:12–15.
  • Aernoudt E, Van Houtte P, Leffers T. Deformation and textures of metals at large strain. plastic deformation and fracture of materials. Weinheim: VCH, Newyork; Basel; Cambridge;1993. pp. 129.
  • Gil Sevillano J. Large strain work hardening and textures. Prog Mater Sci. 1981;25:69–134. doi: 10.1016/0079-6425(80)90001-8
  • Shein IR, Medvedeva NI, Ivanovskii AL. Electronic and structural properties of cementite-type M3X (M=Fe, Co, Ni; X = C or B) by first principles calculations. Physica B. 2006;371:126–132. doi: 10.1016/j.physb.2005.10.093
  • Puttick KE. Structure, deformation, and fracture of pearlite. J Iron Steel Inst. 1957;185:161–176.
  • Park J, Kim S-D, Hong S-P, et al. Quantitative measurement of cementite dissociation in drawn pearlitic steel. Mater Sci Eng A. 2011;528:4947–4952. doi: 10.1016/j.msea.2011.03.051
  • Fang F, Zhao Y, Liu P, et al. Deformation of cementite in cold drawn pearlitic steel wire. Mater Sci Eng A. 2014;608:11–15. doi: 10.1016/j.msea.2014.04.050
  • Keh AS. Imperfections and plastic deformation of cementite in steel. Acta Metall. 1963;11:1101–1103. doi: 10.1016/0001-6160(63)90201-3
  • Nishiyama Z, Kore’eda A, Katagiri S. Study of plane defects in the cementite by transmission electron microscopy. Trans JIM. 1964;5:115–121. doi: 10.2320/matertrans1960.5.115
  • Maurer K, Warrington DH. Deformation of cementation. Phil Mag. 1967;15:321–327. doi: 10.1080/14786436708227704
  • Koréeda A, Shimizu K. Dislocations in cementite. Phil Mag. 1968;17:1083–1086. doi: 10.1080/14786436808223185
  • Gil Sevillano J. Room temperature plastic deformation of pearlitic cementite. Mater Sci Eng. 1975;21:221–225. doi: 10.1016/0025-5416(75)90218-9
  • Karlsson B, Lindén G. Plastic deformation of eutectoid steel with different cementite morphologies. Mater Sci Eng. 1975;17:153–164. doi: 10.1016/0025-5416(75)90039-7
  • Karlsson B, Lindén G. Plastic deformation of ferrite – pearlite structures in steel. Mater Sci Eng. 1975;17:209–219. doi: 10.1016/0025-5416(75)90232-3
  • Inoue A, Ogura T, Masumoto T. Burgers vectors of dislocations in cementite crystal. Scr Mater. 1977;11:1–5.
  • Inoue A, Ogura T, Masumoto T. Microstructures of deformation and fracture of cementite in pearlitic carbon steels strained at various temperatures. Metall Trans A. 1977;8:1689–1695. doi: 10.1007/BF02646871
  • Kar’kina LE, Zubkova TA, Yakovleva IL. Dislocation structure of cementite in granular pearlite after cold plastic deformation. Phys Met Metallogr. 2013;114:234–241. doi: 10.1134/S0031918X13030095
  • Taniyama A, Takayama T, Arai M, et al. Deformation behavior of cementite in deformed high carbon steel observed by X-ray diffraction with synchrotron radiation. Metall Mater Trans A. 2017;48:4821–4830. doi: 10.1007/s11661-017-4229-0
  • Porter DA, Easterling KE, Smith GDW. Dynamic studies of the tensile deformation and fracture of pearlite. Acta Metall. 1978;26:1405–1422. doi: 10.1016/0001-6160(78)90156-6
  • Tagashira S, Sakai K, Furuhara T, et al. Deformation microstructure and tensile strength of cold rolled pearlitic steel sheets. ISIJ Int. 2000;40:1149–1156. doi: 10.2355/isijinternational.40.1149
  • Chakraborty J, Ghosh M, Ranjan R, et al. X-ray diffraction and Mössbauer spectroscopy studies of cementite dissolution in cold-drawn pearlitic steel. Phil Mag. 2013;93:4598–4616. doi: 10.1080/14786435.2013.838010
  • Chen YZ, Csiszár G, Cizek J, et al. Defects in carbon-rich ferrite of cold-drawn pearlitic steel wires. Metall Mater Trans A. 2013;44:3882–3889. doi: 10.1007/s11661-013-1723-x
  • Borchers C, Al-Kassab T, Goto S, et al. Partially amorphous nanocomposite obtained from heavily deformed pearlitic steel. Mater Sci Eng A. 2009;502:$131–138. doi: 10.1016/j.msea.2008.10.018
  • Hong MH, Reynolds WT, Tarui T, et al. Atom probe and transmission electron microscopy investigations of heavily drawn pearlitic steel wire. Metall Mat Trans A. 1999;30:717–727. doi: 10.1007/s11661-999-1003-y
  • Goto S, Kirchheim R, Al-Kassab T, et al. Application of cold drawn lamellar microstructure for developing ultra-high strength wires. Trans Nonferrous Met Soc China. 2007;17:1129–1138. doi: 10.1016/S1003-6326(07)60238-6
  • Xu B, Zhang X. Understanding twinning nucleation and dislocation core structure through interscale hybrid methods. Proceedings of the 35th Risø international symposium on materials science: New frontiers of nanometals;Risø;2014.
  • Gridnev VN, Gavrilyuk VG, Dekhtyar IY, et al. Investigation of carbide phase in strained steel by the method of nuclear gamma resonance. Phys Status Solidi A. 1972;14:689–694. doi: 10.1002/pssa.2210140238
  • Gavriljuk VG. Decomposition of cementite in pearlitic steel due to plastic deformation. Mater Sci Eng A. 2003;345:81–89. doi: 10.1016/S0921-5093(02)00358-1
  • Nam WJ, Bae CM, Oh SJ, et al. Effect of interlamellar spacing on cementite dissolution during wire drawing of pearlitic steel wires. Scr Mater. 2000;42:457–463. doi: 10.1016/S1359-6462(99)00372-3
  • Ivanisenko Y, Lojkowski W, Valiev RZ, et al. The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Mater. 2003;51:5555–5570. doi: 10.1016/S1359-6454(03)00419-1
  • Languillaume J, Kapelski G, Baudelet B. Cementite dissolution in heavily cold drawn pearlitic steel wires. Acta Mater. 1997;45:1201–1212. doi: 10.1016/S1359-6454(96)00216-9
  • Read HG, Reynolds WT, Hono K, et al. APFIM and TEM studies of drawn pearlitic wire. Scr Mater. 1997;37:1221–1230. doi: 10.1016/S1359-6462(97)00223-6
  • Hono K, Ohnuma M, Murayama M, et al. Cementite decomposition in heavily drawn pearlite steel wire. Scr Mater. 2001;44:977–983. doi: 10.1016/S1359-6462(00)00690-4
  • Takahashi J, Tarui T, Kawakami K. Three-dimensional atom probe analysis of heavily drawn steel wires by probing perpendicular to the pearlitic lamellae. Ultramicroscopy. 2009;109:193–199. doi: 10.1016/j.ultramic.2008.10.013
  • Sauvage X, Lefebvre W, Genevois C, et al. Complementary use of transmission electron microscopy and atom probe tomography for the investigation of steels nanostructured by severe plastic deformation. Scr Mater. 2009;60:1056–1061. doi: 10.1016/j.scriptamat.2009.02.019
  • Jiang C, Srinivasan SG, Caro A, et al. Structural, elastic, and electronic properties of Fe3C from first principles. J Appl Phys. 2008;103:043502. doi: 10.1063/1.2884529
  • Voronin VI, Berger IF, Gornostyrev YN, et al. Composition of cementite in the dependence on the temperature. In situ neutron diffraction study and ab initio calculations. JETP Lett. 2010;91:143–146. doi: 10.1134/S0021364010030094
  • Zhang X, Godfrey A, Liu W, et al. Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing. Acta Metall Sin. 2010;46:141–146. doi: 10.3724/SP.J.1037.2009.00247
  • Zidani M, Messaoudi S, Baudin T, et al. Deformation textures in wire drawn perlitic steel. Int J Mater Form. 2010;3:7–11. doi: 10.1007/s12289-009-0410-3
  • Yang F, Ma C, Jiang JQ, et al. Effect of cumulative strain on texture characteristics during wire drawing of eutectoid steels. Scr Mater. 2008;59:850–853. doi: 10.1016/j.scriptamat.2008.06.048
  • Heizmann JJ, Tidu A, Bolle B, et al. Influence of the crystallographic texture on the torsional behavior of steel cord. Wire J Int. 1999;32:150–158.
  • Liu Y, Jiang QW, Wang G, et al. Influence of microstructures and textures on the torsional behavior of pearlitic wires. J Mater Sci Technol. 2005;21:357–360. doi: 10.1179/174328405X27106
  • Abdellaoui A, Montesin T, Heizmann JJ, et al. Study of the texture of steelcord during the Wet drawing process – influence of the patenting and the friction on the dies. Mater Sci Forum. 1994;157-162:611–616. doi: 10.4028/www.scientific.net/MSF.157-162.611
  • Montesin T, Heizmann JJ. Evolution of crystallographic texture in thin wires. J Appl Cryst. 1992;25:665–673. doi: 10.1107/S0021889892004849
  • Van Houte P, Watté P, Aernoudt E, et al. Taylor simulation of cyclic textures at the surface of drawn wires using a simple flow field model. Mater Sci Forum. 1994;157-162:1881–1886. doi: 10.4028/www.scientific.net/MSF.157-162.1881
  • Zhao T-Z, Zhang G-L, Song H-W, et al. Crystallographic texture difference between center and sub-surface of thin cold-drawn pearlitic steel wires. J Mater Eng Perform. 2014;23:3279–3284. doi: 10.1007/s11665-014-1098-1
  • Toribio J, Ovejero E. Effect of cumulative cold drawing on the pearlite interlamellar spacing in eutectoid steel. Scr Mater. 1998;39:323–328. doi: 10.1016/S1359-6462(98)00166-3
  • Maruyama N, Tarui T, Tashiro H. Atom probe study on the ductility of drawn pearlitic steels. Scr Mater. 2002;46:599–603. doi: 10.1016/S1359-6462(02)00037-4
  • Dollar M, Bernstein IM, Thompson AW. Influence of deformation substructure on flow and fracture of fully pearlitic steel. Acta Metall. 1988;36:311–320. doi: 10.1016/0001-6160(88)90008-9
  • Hackney SA, Shiflet GJ. Anisotropy interfacial energy at pearlite lamellar boundaries in a high purity Fe - 0.80% C alloy. Scr Metall. 1986;20:389–394. doi: 10.1016/0036-9748(86)90164-X
  • Zhou DS, Shiflet GJ. Ferrite: cementite crystallography in pearlite. Metall Trans. 1992;23A:1259–1269. doi: 10.1007/BF02665057
  • Kim J, Kang K, Ryu S. Characterization of the misfit dislocations at the ferrite/cementite interface in pearlitic steel: an atomistic simulation study. Int J Plasticity. 2016;83:302–312. doi: 10.1016/j.ijplas.2016.04.016
  • Janecek M, Louchet F, Doisneau-Cottignies B, et al. Specific dislocation multiplication mechanisms and mechanical properties in nanoscaled multilayers: the example of pearlite. Phil Mag A. 2000;80:1605–1619. doi: 10.1080/01418610008212138
  • Zhao T-Z, Song H-W, Zhang S-H. Non-monotonic radial distribution of tensile yielding strength in cold-drawn pearlitic wire. Mater Sci Technol. 2017;34:35–41. DOI:doi: 10.1080/02670836.2017.1352642.
  • Langford G, Cohen M. Strain hardening of iron by severe plastic deformation. Trans ASM. 1969;62:623.
  • Hughes DA, Hansen N. Microstructure and strength of nickel at large strains. Acta Mater. 2000;48:2985–3004. doi: 10.1016/S1359-6454(00)00082-3
  • Gensamer M, Pearsall EB, Pellini WS, et al. Tensile properties of steel. Trans ASM. 1942;30:983–1019.
  • Eshelby JD, Frank FC, Nabarro FRN. The equilibrium of linear arrays of dislocations. Phil Mag. 1951;42:351–364. doi: 10.1080/14786445108561060
  • Nieh TG, Wadsworth J. Hall-petch relation in nanocrystalline solids. Scr Metall Mater. 1991;25:955–958. doi: 10.1016/0956-716X(91)90256-Z
  • Embury JD, Hirth JP. On dislocation storage and the mechanical response of fine scale microstructures. Acta Metall Mater. 1992;42:2051–2056. doi: 10.1016/0956-7151(94)90030-2
  • Gil Sevillano J. Substructure and strengthening of heavily deformed single and two-phase metallic materials. J Phys III. 1991;1:967–988.
  • Misra A, Kung H, Embury JD. Preface to the viewpoint set on: deformation and stability of nanoscale metallic multilayers. Scr Mater. 2004;50:707–710. doi: 10.1016/j.scriptamat.2003.11.036
  • Krauss G. Martensite in steel: strength and structure. Mater Sci Eng A. 1999;273-275:40–57. doi: 10.1016/S0921-5093(99)00288-9
  • Winghell PG, Cohen M. Solid-solution strengthening of martensite by carbon. Electron microscopy and strength of crystals. New York: Interscience Publishers; 1963. p. 995.
  • Kuhlmann-Wilsdorf D. Strengthening through LEDS, Strength of Metals and Alloys (ICSMA 8); 1989; vol. 1. p. 221–226.
  • Hansen N, Huang X. Microstructure and flow stress of polycrystals and single crystals. Acta Mater. 1998;46:1827–1836. doi: 10.1016/S1359-6454(97)00365-0
  • Hirakami D, Ushioda K, Manabe T, et al. Change in the microstructure and mechanical properties of drawn pearlitic steel with low-temperature aging. Proceedings of the 38th Risø international symposium on materials science: advanced metallic materials by microstructural design;Risø;2017. p. 259–266.
  • Herbig M, Choi P, Raabe D. Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy. 2015;153:32–39. doi: 10.1016/j.ultramic.2015.02.003
  • Lv ZQ, Jiang P, Wang ZH, et al. XRD analyses on dissolution behavior of cementite in eutectoid pearlitic steel during cold rolling. Mater Lett. 2008;62:2825–2827. doi: 10.1016/j.matlet.2008.01.055
  • Wetcher F, Stock R, Pippan R. Changes in the mechanical properties of a pearlitic steel due to large shear deformation. Mater Sci Eng A. 2007;445:237–243. doi: 10.1016/j.msea.2006.09.026
  • Wetscher F, Pippan R, Sturm S, et al. TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metall Mater Trans A. 2006;37:1963–1968. doi: 10.1007/s11661-006-0138-3
  • Sauvage X, Ivanisenko Y. The role of carbon segregation on nanocrystallisation of pearlitic steels processed by severe plastic deformation. J Mater Sci. 2007;42:1615–1621. doi: 10.1007/s10853-006-0750-z
  • Hohenwarter A, Taylor A, Stock R, et al. Effect of large shear deformations on the fracture behavior of a fully pearlitic steel. Metall Mater Trans A. 2011;42:1609–1618. doi: 10.1007/s11661-010-0541-7
  • Hirakami D, Ushioda K, Manabel T, et al. Change in the microstructure and mechanical properties of drawn pearlitic steel with low-temperature aging. IOP Conf Ser Mater Sci Eng. 2017;219:012026. doi: 10.1088/1757-899X/219/1/012026
  • Buono VTL, Andrade MS, Gonzalez BM. Kinetics of strain aging in drawn pearlitic steels. Metall Mater Trans A. 1998;29:1415–1423. doi: 10.1007/s11661-998-0356-y
  • Watté P, Van Humbeeck J, Aernoudt E, et al. Strain ageing in heavily drawn eutectoid steel wires. Scr. Mater. 1996;34:89–95. doi: 10.1016/1359-6462(95)00479-3
  • Zhang X, Bech JI, Hansen N. Low temperature annealing of cold-drawn pearlitic steel wire. IOP Conf Ser Mater Sci Eng. 2015;89:012158.
  • Hohenwarter A, Völker B, Kapp MW, et al. Ultra-strong and damage tolerant metallic bulk materials: a lesson from nanostructured pearlitic steel wires. Sci Rep. 2016;6:33228. doi: 10.1038/srep33228

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.