189
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Structure and mechanism of the deformation of Grade 2 titanium in plastometric studies

, , , &
Pages 253-259 | Received 06 Oct 2017, Accepted 16 Feb 2018, Published online: 08 Mar 2018

References

  • Jeleńkowski J, Klimas M, Skalski K, et al. Experimental analysis of the plastic deformation process of αTi titanium with the use of mechanical state equations. Inżynieria Powierzchni [Surf Eng.]. 2015;20(4):72–77.
  • Kotkunde N, Krishnamurthy HN, Puranik P, et al. Microstructure study and constitutive modelling of Ti–6Al–4 V alloy at elevated temperatures. Mater Des. 2014;54:96–103. doi: 10.1016/j.matdes.2013.08.006
  • Mirzadeh H. Constitutive modelling of commercial pure titanium during hot deformation in alpha and beta phase fields. IJEMS. 2016;23:60–64.
  • Pilehva F, Zarei-Hanzaki A, Ghambari M, et al. Flow behaviour modelling of a Ti-6Al-7Nb alloy during manufacturing at elevated temperatures. Mater Des. 2013;51:457–465. doi: 10.1016/j.matdes.2013.04.046
  • Woei-Shyan L, Chi-Feng L. Plastic deformation and fracture behaviour of Ti-6Al-4 V alloy loaded with high strain rate under various temperatures. Mater Sci Eng A. 1998;A241:48–59.
  • Ushkov SS, Kudryavtsev AS, Karasev ÉA. Special features of the distribution of interstitial elements in cast and deformed titanium pseudo-α-alloy. Met Sci Heat Treat. 1999;41(9):408–411. doi: 10.1007/BF02469880
  • Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207. doi: 10.1016/j.pmatsci.2013.09.002
  • Liu S, Qian L, Meng J. Ductility of Fe–Mn–C twinning-induced plasticity steel via Cr/Mo alloying. Scripta Mater. 2017;127:10–14. doi: 10.1016/j.scriptamat.2016.08.034
  • Tan K, et al. The identification of dynamic recrystalization and constitutive modeling during hot deformation of Ti55511 titanium alloy. Mater Des. 2015;84:204–211. doi: 10.1016/j.matdes.2015.06.093
  • Huang K, Loge RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016;111:548–574. doi: 10.1016/j.matdes.2016.09.012
  • Frost HJ, Ashby MF. Deformation mechanism maps. Oxford: Pergamon Press; 1982.
  • Lin YC, Chen X-M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32:1733–1759. doi: 10.1016/j.matdes.2010.11.048
  • Lin YC, Li K-K, Li H-B, et al. New constitutive model for high-temperature deformation behaviour of inconel 718 super alloy. Mater Des. 2015;74:108–118. doi: 10.1016/j.matdes.2015.03.001
  • Luan J, Sun C, Li X, et al. Constitutive model for AZ31 magnesium alloy based on isothermal compression test. J Mater Sci Technol. 2014;30(2):211–219. doi: 10.1179/1743284713Y.0000000341
  • Peng W, Zeng W, Wang Q, et al. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial network models. Mater Des. 2013;51:95–104. doi: 10.1016/j.matdes.2013.04.009
  • Zeng Z, Jonsson S, Zhang Y. Constitutive equations for pure titanium at elevated temperatures. Mater Sci Eng A. 2009;505(1/2):116–119. doi: 10.1016/j.msea.2008.11.017
  • Sumantra M, Rakesh V, Sivaprasad PV, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater Sci Eng A. 2009;500(1-2):114–121. doi: 10.1016/j.msea.2008.09.019
  • Dyja H, Gałkin A, Knapiński M. Reologia metali odkształcanych plastycznie [Reology of metals during plastic forming]. Częstochowa: Wydawnictwa Politechniki Częstochowskiej; 2010.
  • Dong Y, Zhang C, Zhao G, et al. Constitutive equation and processing maps of an Al-Mg-Si aluminium alloy: determination and application in simulating extrusion process of complex profiles. Mater Des. 2016;92:983–997. doi: 10.1016/j.matdes.2015.12.113
  • Pośpiech J. Teoria dowolnie dużych odkształceń [Theory of unlimited deformalibity]. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej; 2012.
  • Zeng Z, et al. Deformation behaviour of commercially pure titanium during simple hot compression. Mater Des. 2009;30(8):3105–3111. doi: 10.1016/j.matdes.2008.12.002
  • Yuan L, Hu R, Li J, et al. New insight into serrated flow in Pt2Mo-type superlattice strengthened Ni–Cr–Mo alloy at room temperature. Mater Lett. 2016;163:94–97. doi: 10.1016/j.matlet.2015.10.075
  • Bystrzycki J. Niekonwencjonalne metody kształtowania struktury i właściwości stopoów na osnowie fazy międzymetalicznej FeAl [Unconventional methods of shaping FeAl intermetallic phase based structures and alloys]. Warsaw: Bel Studio; 2004.
  • Zhang J, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61:1–93. doi: 10.1016/j.pmatsci.2013.10.001
  • Shibkov AA, Zolotov AE, Zheltov A, et al. Study of the mechanisms of current-induced suppression of serrated deformation. Crystallogr Rep. 2015;60(6):895–906. doi: 10.1134/S1063774515060310
  • Max B, Viguier B, Andrieu E, et al. A re-examination of the Portevin–Le Chatelier effect in alloy 718 in connection with oxidation-assisted intergranular cracking. Metall Mater Trans A. 2014;45(12):5431–5441. doi: 10.1007/s11661-014-2508-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.