265
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Residual stress generation in metal matrix composites after cooling

, &
Pages 1388-1400 | Received 28 Nov 2017, Accepted 16 Mar 2018, Published online: 08 Apr 2018

References

  • Paknia A, Pramanik A, Dixit A, et al. Effect of size, content and shape of reinforcements on the behavior of metal matrix composites (MMCs) under tension. J Mater Eng Perform. 2016;25(10):4444–4459. doi: 10.1007/s11665-016-2307-x
  • Bouafia F, Serier B, Bouiadjra BAB. Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite. Comput Mater Sci. 2012;54:195–203. doi: 10.1016/j.commatsci.2011.10.030
  • Pramanik A, Islam MN, Boswell B, et al. Accuracy and finish during wire electric discharge machining of metal matrix composites for different reinforcement size and machining conditions. Proc Inst Mech Eng, Part B: J Eng Man. 2016. 0954405416662079.
  • Kaczmar J, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials. J Mater Process Technol. 2000;106(1):58–67. doi: 10.1016/S0924-0136(00)00639-7
  • Pramanik A, Basak AK. Effect of machining parameters on deformation behaviour of Al-based metal matrix composites under tension. Proc Inst Mech Eng, Part B: J Eng Man. 2016;232(2):217–225. 0954405416640188. doi: 10.1177/0954405416640188
  • Basak A, Pramanik A, Islam MN, editors. Failure mechanisms of nanoparticle reinforced metal matrix composite. Adv Mat Res. 2013 . Trans Tech Publ.
  • Humphreys F, Miller W, Djazeb M. Microstructural development during thermomechanical processing of particulate metal-matrix composites. Mater Sci Technol. 1990;6(11):1157–1166. doi: 10.1179/mst.1990.6.11.1157
  • Hakami F, Pramanik A, Basak AK. Tool wear and surface quality of metal matrix composites due to machining: a review. Proc Inst Mech Eng, Part B: J Eng Man. 2017;231(5):739–752. doi: 10.1177/0954405416667402
  • Ho S, Lavernia E. Thermal residual stresses in metal matrix composites: a review. Appl Compos Mater. 1995;2(1):1–30. doi: 10.1007/BF00567374
  • Ho S, Saigal A. Three-dimensional modelling of thermal residual stresses and mechanical behavior of cast SiC/A1 particulate composites. Acta metallurgica et materialia. 1994;42(10):3253–3262. doi: 10.1016/0956-7151(94)90458-8
  • Povirk G, Needleman A, Nutt S. An analysis of residual stress formation in whisker-reinforced Al · SiC composites. Mat Sci Eng A. 1990;125(2):129–140. doi: 10.1016/0921-5093(90)90165-Y
  • Teixeira-Dias F, Menezes L. Thermal residual stresses in Aluminium matrix composites. Heat Transfer in Multi-Phase Mat. 2010;2:33–62. doi: 10.1007/8611_2010_1
  • Pramanik A, Zhang L, Arsecularatne J. An FEM investigation into the behavior of metal matrix composites: tool–particle interaction during orthogonal cutting. Int J Mach Tools Manuf. 2007;47(10):1497–1506. doi: 10.1016/j.ijmachtools.2006.12.004
  • Pramanik A, Zhang L, Arsecularatne J. Deformation mechanisms of MMCs under indentation. Compos Sci Technol. 2008;68(6):1304–1312. doi: 10.1016/j.compscitech.2007.12.008
  • Pramanik A, Zhang LC, Arsecularatne JA. Micro-indentation of metal matrix composite-an FEM investigation. Key Eng Mat. 2007;340:563–570. Trans Tech Publ. doi: 10.4028/www.scientific.net/KEM.340-341.563
  • Pramanik A, Zhang L. Particle fracture and debonding during orthogonal machining of metal matrix composites. Adv Manufact. 2017;5(1):77–82. doi: 10.1007/s40436-017-0170-0
  • ASM. Aluminium 6061-T6: Aerospace Specification Metals Inc.; 2017 [cited 2017 Oct 26]. Available from: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma6061t6http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma6061t6
  • Accuratus. Silicon carbide, SiC ceramic properties: accuratus ceramic corporation; 2017 [cited 2017 Oct 26]. Available from: http://accuratus.com/silicar.html
  • Cornwall B, Krstic V. Role of residual stress field interaction in strengthening of particulate-reinforced composites. J Mater Sci. 1992;27(5):1217–1221. doi: 10.1007/BF01142025
  • Coats D, Krawitz A. Effect of particle size on thermal residual stress in WC–Co composites. Mater Sci Eng A. 2003;359(1):338–342. doi: 10.1016/S0921-5093(03)00379-4
  • Lee EU. Thermal stress and strain in a metal matrix. Metall Trans A. 1992;23(8):1229. doi: 10.1007/BF02646013
  • Song J, Guo Q, Ouyang Q, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al–Zn–Mg–Cu composites. Mater Sci Eng A. 2015;644:79–84. doi: 10.1016/j.msea.2015.07.050
  • Jiptner K, Gao B, Harada H, et al. Thermal stress induced dislocation distribution in directional solidification of Si for PV application. J Cryst Growth. 2014;408:19–24. doi: 10.1016/j.jcrysgro.2014.09.017
  • Chawla N, Shen Y-L. Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater. 2001;3(6):357–370. doi: 10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I
  • Lin K, Dai Pang S. The influence of thermal residual stresses and thermal generated dislocation on the mechanical response of particulate-reinforced metal matrix nanocomposites. Compos B Eng. 2015;83:105–116. doi: 10.1016/j.compositesb.2015.08.008
  • Zhu Y, Kishawy H. Influence of alumina particles on the mechanics of machining metal matrix composites. Int J Mach Tools Manuf. 2005;45(4–5):389–398. doi: 10.1016/j.ijmachtools.2004.09.013
  • Das T, Munroe P, Bandyopadhyay S, et al. Interfacial behaviour of 6061/AI203 metal matrix composites. Mater Sci Technol. 1997;13(9):778–784. doi: 10.1179/026708397790290344
  • Zong B, X.-H. Guo, Derby B. Stiffness of particulate reinforced metal matrix composites with damaged reinforcements. Mater Sci Technol. 1999;15(7):827–832. doi: 10.1179/026708399101506472
  • Allen AJ, Bourke MAM, Dawes S, et al. The analysis of internal strains measured by neutron diffraction in Al/SiC metal matrix composites. Acta metallurgica et materialia. 1992;40(9):2361–2373. doi: 10.1016/0956-7151(92)90155-8
  • Kupperman D, Majumdar S, MacEwen S, et al. Nondestructive characterization of ceramic composite whiskers with neutron diffraction and ultrasonic techniques. Rev Prog Quant Nondestructive Eval. 1988:961–969. doi: 10.1007/978-1-4613-0979-6_10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.