2,789
Views
43
CrossRef citations to date
0
Altmetric
Review

Recent advancement in metal–organic framework: synthesis, activation, functionalisation, and bulk production

ORCID Icon & ORCID Icon
Pages 1025-1045 | Received 12 Feb 2018, Accepted 19 Apr 2018, Published online: 06 May 2018

References

  • Furukawa H, Cordova KE, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444. doi: 10.1126/science.1230444
  • Ferey G. Hybrid porous solids: past, present, future. Chem Soc Rev. 2008;37(1):191–214. doi: 10.1039/B618320B
  • Foo ML, Matsuda R, Kitagawa S. Functional hybrid porous coordination polymers. Chem Mater. 2014;26(1):310–322. doi: 10.1021/cm402136z
  • Sumida K, Rogow DL, Mason JA, et al. Carbon dioxide capture in metal–organic frameworks. Chem Rev. 2011;112(2):724–781. doi: 10.1021/cr2003272
  • He Y, Zhou W, Qian G, et al. Methane storage in metal-organic frameworks. Chem Soc Rev. 2014;43(16):5657–5678. doi: 10.1039/C4CS00032C
  • Murray LJ, Dinca M, Long JR. Hydrogen storage in metal-organic frameworks. Chem Soc Rev. 2009;38(5):1294–1314. doi: 10.1039/b802256a
  • Liu J, Chen L, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev. 2014;43(16):6011–6061. doi: 10.1039/C4CS00094C
  • Li J-R, Sculley J, Zhou H-C. Metal–organic frameworks for separations. Chem Rev. 2011;112(2):869–932. doi: 10.1021/cr200190s
  • Kreno LE, Leong K, Farha OK, et al. Metal–organic framework materials as chemical sensors. Chem Rev. 2011;112(2):1105–1125. doi: 10.1021/cr200324t
  • Lei J, Qian R, Ling P, et al. Design and sensing applications of metal–organic framework composites. TrAC, Trends Anal Chem. 2014;58(0):71–78. doi: 10.1016/j.trac.2014.02.012
  • Horcajada P, Gref R, Baati T, et al. Metal–organic frameworks in biomedicine. Chem Rev. 2011;112(2):1232–1268. doi: 10.1021/cr200256v
  • Rowsell JLC, Yaghi OM. Metal–organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004;73(1–2):3–14. doi: 10.1016/j.micromeso.2004.03.034
  • Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;402(6759):276–279. doi: 10.1038/46248
  • Rosi NL, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks. Science. 2003;300(5622):1127. doi: 10.1126/science.1083440
  • Zhou W, Wu H, Hartman MR, et al. Hydrogen and methane adsorption in metal−organic frameworks: a high-pressure volumetric study. J Phys Chem C. 2007;111(44):16131–16137. doi: 10.1021/jp074889i
  • Zhao Z, Li Z, Lin YS. Adsorption and diffusion of carbon dioxide on metal−organic framework (MOF-5). Ind Eng Chem Res. 2009;48(22):10015–10020. doi: 10.1021/ie900665f
  • Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2011;112(2):933–969. doi: 10.1021/cr200304e
  • Gordon J, Kazemian H, Rohani S. Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation. Microporous Mesoporous Mater. 2012;162:36–43. doi: 10.1016/j.micromeso.2012.06.009
  • Howarth AJ, Peters AW, Vermeulen NA, et al. Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem Mater. 2017;29(1):26–39. doi: 10.1021/acs.chemmater.6b02626
  • Xu R, Pang W, Yu J, et al. Synthetic chemistry of microporous compounds (I)– fundamentals and synthetic routes. In: Chemistry of zeolites and related porous materials: synthesis and structure. Singapore: John Wiley & Sons (Asia) Pte Ltd; 2007. p. 117–189.
  • Einarsrud M-A, Grande T. 1D oxide nanostructures from chemical solutions. Chem Soc Rev. 2014;43(7):2187–2199. doi: 10.1039/C3CS60219B
  • Demazeau G. Solvothermal and hydrothermal processes: the main physico-chemical factors involved and new trends. Res Chem Intermed. 2011;37(2–5):107–123. doi: 10.1007/s11164-011-0240-z
  • Morris RE. Ionothermal synthesis of zeolites and other porous materials. In: Čejka J, Corma A, Zones S, editors. Zeolites and catalysis: synthesis, reactions and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. p. 87–105.
  • Schlesinger M, Schulze S, Hietschold M, et al. Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater. 2010;132(1–2):121–127. doi: 10.1016/j.micromeso.2010.02.008
  • Rabenau A. The role of hydrothermal synthesis in preparative chemistry. Angew Chem Int Ed. 1985;24(12):1026–1040. doi: 10.1002/anie.198510261
  • Yu J. Chapter 3 synthesis of zeolites. In: Čejka J, van Bekkum H, Corma A, et al., editors. Introduction to Zeolite Science and Practice. New York: Elsevier; 2007. p. 39–103.
  • Tang J, Salunkhe RR, Zhang H, et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci Rep. 2016;6:30295. doi: 10.1038/srep30295
  • Morris RE. Ionic liquids and microwaves – making zeolites for emerging applications. Angew Chem Int Ed. 2008;47(3):442–444. doi: 10.1002/anie.200704888
  • Meng X, Xiao F-S. Green routes for synthesis of zeolites. Chem Rev. 2014;114(2):1521–1543. doi: 10.1021/cr4001513
  • Parnham ER, Morris RE. Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic–organic hybrids. Acc Chem Res. 2007;40(10):1005–1013. doi: 10.1021/ar700025k
  • Xu L, Choi E-Y, Kwon Y-U. Ionothermal synthesis of a 3D Zn–BTC metal-organic framework with distorted tetranuclear [Zn4(μ4-O)] subunits. Inorg Chem Commun. 2008;11(10):1190–1193. doi: 10.1016/j.inoche.2008.07.001
  • Liu J, Zou X, Liu C, et al. Ionothermal synthesis and proton-conductive properties of NH2-MIL-53 MOF nanomaterials. CrystEngComm. 2016;18(4):525–528. doi: 10.1039/C5CE02141C
  • Huang L, Wang H, Chen J, et al. Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 2003;58(2):105–114. doi: 10.1016/S1387-1811(02)00609-1
  • Díaz-García M, Mayoral Á, Díaz I, et al. Nanoscaled M-MOF-74 materials prepared at room temperature. Cryst Growth Des. 2014;14(5):2479–2487. doi: 10.1021/cg500190h
  • Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-[0]. Tetrahedron. 2008;64(36):8553–8557. doi: 10.1016/j.tet.2008.06.036
  • Calleja G, Botas J, Orcajo MG, et al. Differences between the isostructural IRMOF-1 and MOCP-L porous adsorbents. J Porous Mater. 2010;17(1):91–97. doi: 10.1007/s10934-009-9268-5
  • Cravillon J, Münzer S, Lohmeier S-J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater. 2009;21(8):1410–1412. doi: 10.1021/cm900166h
  • Gross AF, Sherman E, Vajo JJ. Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans. 2012;41(18):5458–5460. doi: 10.1039/c2dt30174a
  • Qian J, Sun F, Qin L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett. 2012;82(Supplement C):220–223. doi: 10.1016/j.matlet.2012.05.077
  • Sanchez-Sanchez M, Getachew N, Diaz K, et al. Synthesis of metal-organic frameworks in water at room temperature: salts as linker sources. Green Chem. 2014;17:1500–1509. doi: 10.1039/C4GC01861C
  • Varma RS. Microwave technology – applications in chemical synthesis. In: Kirk-Othmer encyclopedia of chemical technology. Hoboken: John Wiley & Sons, Inc; 2000.
  • Galema SA. Microwave chemistry. Chem Soc Rev. 1997;26(3):233–238. doi: 10.1039/cs9972600233
  • Xu Y-P, Tian Z-J, Wang S-J, et al. Microwave-enhanced ionothermal synthesis of aluminophosphate molecular sieves. Angew Chem. 2006;118(24):4069–4074. doi: 10.1002/ange.200600054
  • Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed. 2004;43(46):6250–6284. doi: 10.1002/anie.200400655
  • Klinowski J, Almeida Paz FA, Silva P, et al. Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans. 2011;40(2):321–330. doi: 10.1039/C0DT00708K
  • Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev. 2015;285:11–23. doi: 10.1016/j.ccr.2014.10.008
  • Zhu Y-J, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev. 2014;114(12):6462–6555. doi: 10.1021/cr400366s
  • Kitchen HJ, Vallance SR, Kennedy JL, et al. Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. Chem Rev. 2013;114(2):1170–1206. doi: 10.1021/cr4002353
  • Choi J-S, Son W-J, Kim J, et al. Metal–organic framework MOF-5 prepared by microwave heating: factors to be considered. Microporous Mesoporous Mater. 2008;116(1–3):727–731. doi: 10.1016/j.micromeso.2008.04.033
  • Mason TJ. Ultrasound in synthetic organic chemistry. Chem Soc Rev. 1997;26(6):443–451. doi: 10.1039/cs9972600443
  • Rial-Otero R. Ultrasonic assisted extraction for the analysis of organic compounds by chromatographic techniques. In: Capelo-Martínez J-L, editor. Ultrasound in chemistry: Analytical Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 55–79.
  • Bang JH, Suslick KS. Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater. 2010;22(10):1039–1059. doi: 10.1002/adma.200904093
  • Xu H, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev. 2013;42(7):2555–2567. doi: 10.1039/C2CS35282F
  • Hinman JJ, Suslick KS. Nanostructured materials synthesis using ultrasound. Top Curr Chem. 2017;375(1):12. doi: 10.1007/s41061-016-0100-9
  • Santos HM, Lodeiro C, Capelo-Martínez J-L. The power of ultrasound. In: Capelo-Martínez J-L, editor. Ultrasound in chemistry: Analytical Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 1–16.
  • Son W-J, Kim J, Kim J, et al. Sonochemical synthesis of MOF-5. Chem Commun. 2008;(47):6336–6338. doi: 10.1039/b814740j
  • Haque E, Khan NA, Park JH, et al. Synthesis of a metal–organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: A kinetic study. Chem Eur J. 2010;16(3):1046–1052. doi: 10.1002/chem.200902382
  • Esrafili L, Azhdari Tehrani A, Morsali A. Ultrasonic assisted synthesis of two urea functionalized metal organic frameworks for phenol sensing: a comparative study. Ultrason Sonochem. 2017;39(Supplement C):307–312. doi: 10.1016/j.ultsonch.2017.04.039
  • Wang G-W. Mechanochemical organic synthesis. Chem Soc Rev. 2013;42(18):7668–7700. doi: 10.1039/c3cs35526h
  • Sepelak V, Begin-Colin S, Le Caer G. Transformations in oxides induced by high-energy ball-milling. Dalton Trans. 2012;41(39):11927–11948. doi: 10.1039/c2dt30349c
  • Friscic T. Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal-organic frameworks. Chem Soc Rev. 2012;41(9):3493–3510. doi: 10.1039/c2cs15332g
  • Braga D, Maini L, Grepioni F. Mechanochemical preparation of co-crystals. Chem Soc Rev. 2013;42(18):7638–7648. doi: 10.1039/c3cs60014a
  • Caruso MM, Davis DA, Shen Q, et al. Mechanically-induced chemical changes in polymeric materials. Chem Rev. 2009;109(11):5755–5798. doi: 10.1021/cr9001353
  • Stock N, Reinsch H, Schilling L-H. Chapter 2 synthesis of MOFs. In: Xamena FX, Gascon J, editors. Metal organic frameworks as heterogeneous catalysts. Cambridge: The Royal Society of Chemistry; 2013. p. 9–30.
  • Julien PA, Mottillo C, Friscic T. Metal-organic frameworks meet scalable and sustainable synthesis. Green Chem. 2017;19(12):2729–2747. doi: 10.1039/C7GC01078H
  • McNaught AD, Wilkinson A. IUPAC. Compendium of chemical terminology. 2nd ed. (the “gold book”). Hoboken: Blackwell Science; 1997.
  • Morris RE, James SL. Solventless synthesis of zeolites. Angew Chem Int Ed. 2013;52(8):2163–2165. doi: 10.1002/anie.201209002
  • Tan D, Friščić T. Mechanochemistry for organic chemists: an update. European J Org Chem. 2018;2018:18–33. doi: 10.1002/ejoc.201700961
  • Baig RBN, Varma RS. Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem Soc Rev. 2012;41(4):1559–1584. doi: 10.1039/C1CS15204A
  • Ralphs K, Hardacre C, James SL. Application of heterogeneous catalysts prepared by mechanochemical synthesis. Chem Soc Rev. 2013;42(18):7701–7718. doi: 10.1039/c3cs60066a
  • Pichon A, Lazuen-Garay A, James SL. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm. 2006;8(3):211–214. doi: 10.1039/b513750k
  • Friščić T, Trask AV, Jones W, et al. Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew Chem, Int Ed. 2006;45(45):7546–7550. doi: 10.1002/anie.200603235
  • Friščić T, Reid DG, Halasz I, et al. Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating. Angew Chem Int Ed. 2010;49(4):712–715. doi: 10.1002/anie.200906583
  • Beldon PJ, Fábián L, Stein RS, et al. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed. 2010;49(50):9640–9643. doi: 10.1002/anie.201005547
  • Tanaka S, Nagaoka T, Yasuyoshi A, et al. Hierarchical pore development of ZIF-8 MOF by simple salt-assisted mechanosynthesis. Cryst Growth Des. 2017;18:274–279. doi: 10.1021/acs.cgd.7b01211
  • Mueller U, Puetter H, Hesse M, et al. Method for electrochemical production of a crystalline porous metal organic skeleton material. Ludwigshafen: BASF Aktiengesellschaft; 2005.
  • Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, et al. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst Growth Des. 2012;12(7):3489–3498. doi: 10.1021/cg300552w
  • Hartmann M, Kunz S, Himsl D, et al. Adsorptive separation of isobutene and isobutane on Cu3(BTC)[2]. Langmuir. 2008;24(16):8634–8642. doi: 10.1021/la8008656
  • Ameloot R, Stappers L, Fransaer J, et al. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem Mater. 2009;21(13):2580–2582. doi: 10.1021/cm900069f
  • Xuan W, Zhu C, Liu Y, et al. Mesoporous metal-organic framework materials. Chem Soc Rev. 2012;41(5):1677–1695. doi: 10.1039/C1CS15196G
  • Zhang Z, Zaworotko MJ. Template-directed synthesis of metal-organic materials. Chem Soc Rev. 2014;43(16):5444–5455. doi: 10.1039/C4CS00075G
  • Zhao D, Wan Y, Zhou W. Synthesis approach of mesoporous molecular sieves. In: Ordered mesoporous materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 5–54.
  • Zhao D, Wan Y, Zhou W. Mechanisms for formation of mesoporous materials. In: Ordered mesoporous materials. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 55–116.
  • Pham M-H, Vuong G-T, Vu A-T, et al. Novel route to size-controlled Fe–MIL-88B–NH2 metal–organic framework nanocrystals. Langmuir. 2011;27(24):15261–15267. doi: 10.1021/la203570h
  • Fan X, Wang W, Li W, et al. Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl Mater Interfaces. 2014;6(17):14994–14999. doi: 10.1021/am5028346
  • Linares N, Silvestre-Albero AM, Serrano E, et al. Mesoporous materials for clean energy technologies. Chem Soc Rev. 2014;43(22):7681–7717. doi: 10.1039/C3CS60435G
  • Sun L-B, Li J-R, Park J, et al. Cooperative template-directed assembly of mesoporous metal–organic frameworks. J Am Chem Soc. 2011;134(1):126–129. doi: 10.1021/ja209698f
  • Matsuyama K. Supercritical fluid processing for metal–organic frameworks, porous coordination polymers, and covalent organic frameworks. J Supercrit Fluids. 2018;134:197–203. doi: 10.1016/j.supflu.2017.12.004
  • Thomas KM. Hydrogen adsorption on metal organic framework materials for storage applications. In: Bruce DW, O’Hare D, Walton RI, editors. Energy materials. West Sussex: John Wiley & Sons, Ltd; 2011. p. 245–281.
  • Kitagawa S, Kitaura R, Noro S-i. Functional porous coordination polymers. Angew Chem Int Ed. 2004;43(18):2334–2375. doi: 10.1002/anie.200300610
  • Farha OK, Hupp JT. Rational design, synthesis, purification, and activation of metal−organic framework materials. Acc Chem Res. 2010;43(8):1166–1175. doi: 10.1021/ar1000617
  • Mondloch JE, Karagiaridi O, Farha OK, et al. Activation of metal-organic framework materials. CrystEngComm. 2013;15(45):9258–9264. doi: 10.1039/c3ce41232f
  • Nelson AP, Farha OK, Mulfort KL, et al. Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J Am Chem Soc. 2008;131(2):458–460. doi: 10.1021/ja808853q
  • Qian L, Zhang H. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J Chem Technol Biotechnol. 2011;86(2):172–184. doi: 10.1002/jctb.2495
  • Ma L, Jin A, Xie Z, et al. Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal–organic frameworks. Angew Chem Int Ed. 2009;48(52):9905–9908. doi: 10.1002/anie.200904983
  • He Y-P, Tan Y-X, Zhang J. Comparative study of activation methods on tuning gas sorption properties of a metal–organic framework with nanosized ligands. Inorg Chem. 2012;51(21):11232–11234. doi: 10.1021/ic3017529
  • Tanabe KK, Cohen SM. Postsynthetic modification of metal-organic frameworks-a progress report. Chem Soc Rev. 2011;40(2):498–519. doi: 10.1039/C0CS00031K
  • Deng H, Grunder S, Cordova KE, et al. Large-pore apertures in a series of metal-organic frameworks. Science. 2012;336(6084):1018–1023. doi: 10.1126/science.1220131
  • Moh PY. Crystal growth of the metal-organic framework ZIF-8. Manchester: University of Manchester; 2012.
  • Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc. 1990;112(4):1546–1554. doi: 10.1021/ja00160a038
  • Wang Z, Cohen SM. Postsynthetic covalent modification of a neutral metal−organic framework. J Am Chem Soc. 2007;129(41):12368–12369. doi: 10.1021/ja074366o
  • Cohen SM. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev. 2011;112(2):970–1000. doi: 10.1021/cr200179u
  • Burrows AD. Chapter 3 post-synthetic modification of MOFs. In: Xamena FX, Gascon J, editors. Metal organic frameworks as heterogeneous catalysts. Cambridge: The Royal Society of Chemistry; 2013. p. 31–75.
  • Britt D, Lee C, Uribe-Romo FJ, et al. Ring-opening reactions within porous metal−organic frameworks. Inorg Chem. 2010;49(14):6387–6389. doi: 10.1021/ic100652x
  • Dugan E, Wang Z, Okamura M, et al. Covalent modification of a metal-organic framework with isocyanates: probing substrate scope and reactivity. Chem Commun. 2008;(29):3366–3368. doi: 10.1039/b806150e
  • Luan Y, Zheng N, Qi Y, et al. Development of a SO3H-functionalized UiO-66 metal–organic framework by postsynthetic modification and studies of its catalytic activities. Eur J Inorg Chem. 2014;2014(26):4268–4272. doi: 10.1002/ejic.201402509
  • Rubin HN, Reynolds MM. Functionalization of metal–organic frameworks to achieve controllable wettability. Inorg Chem. 2017;56(9):5266–5274. doi: 10.1021/acs.inorgchem.7b00373
  • Liu B, Jie S, Bu Z, et al. Postsynthetic modification of mixed-linker metal-organic frameworks for ethylene oligomerization. RSC Adv. 2014;4(107):62343–62346. doi: 10.1039/C4RA10605A
  • Nguyen HGT, Weston MH, Farha OK, et al. A catalytically active vanadyl(catecholate)-decorated metal organic framework via post-synthesis modifications. CrystEngComm. 2012;14(12):4115–4118. doi: 10.1039/c2ce06666a
  • Nguyen HGT, Weston MH, Sarjeant AA, et al. Design, synthesis, characterization, and catalytic properties of a large-pore metal-organic framework possessing single-site vanadyl(monocatecholate) moieties. Cryst Growth Des. 2013;13(8):3528–3534. doi: 10.1021/cg400500t
  • Yamada T, Kitagawa H. Protection and deprotection approach for the introduction of functional groups into metal−organic frameworks. J Am Chem Soc. 2009;131(18):6312–6313. doi: 10.1021/ja809352y
  • Lun DJ, Waterhouse GIN, Telfer SG. A general thermolabile protecting group strategy for organocatalytic metal−organic frameworks. J Am Chem Soc. 2011;133(15):5806–5809. doi: 10.1021/ja202223d
  • Deria P, Mondloch JE, Karagiaridi O, et al. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. Chem Soc Rev. 2014;43(16):5896–5912. doi: 10.1039/C4CS00067F
  • Karagiaridi O, Bury W, Mondloch JE, et al. Solvent-assisted linker exchange: an alternative to the denovo synthesis of unattainable metal–organic frameworks. Angew Chem Int Ed. 2014;53(18):4530–4540. doi: 10.1002/anie.201306923
  • Fei H, Shin J, Meng YS, et al. Reusable oxidation catalysis using metal-monocatecholato species in a robust metal–organic framework. J Am Chem Soc. 2014;136(13):4965–4973. doi: 10.1021/ja411627z
  • Karagiaridi O, Vermeulen NA, Klet RC, et al. Functionalized defects through solvent-assisted linker exchange: synthesis, characterization, and partial postsynthesis elaboration of a metal–organic framework containing free carboxylic acid moieties. Inorg Chem. 2015;54(4):1785–1790. doi: 10.1021/ic502697y
  • Deria P, Mondloch JE, Tylianakis E, et al. Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. J Am Chem Soc. 2013;135(45):16801–16804. doi: 10.1021/ja408959g
  • Deria P, Bury W, Hupp JT, et al. Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chem Commun. 2014;50(16):1965–1968. doi: 10.1039/c3cc48562e
  • Lalonde M, Bury W, Karagiaridi O, et al. Transmetalation: routes to metal exchange within metal-organic frameworks. J Mater Chem A. 2013;1(18):5453–5468. doi: 10.1039/c3ta10784a
  • Liu T-F, Zou L, Feng D, et al. Stepwise synthesis of robust metal–organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. J Am Chem Soc. 2014;136(22):7813–7816. doi: 10.1021/ja5023283
  • Smith SJD, Ladewig BP, Hill AJ, et al. Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. Sci Rep. 2015;57:823.
  • Denny MS, Parent LR, Patterson JP, et al. Transmission electron microscopy reveals deposition of metal oxide coatings onto metal–organic frameworks. J Am Chem Soc. 2018;140(4):1348–1357. doi: 10.1021/jacs.7b10453
  • Rubio-Martinez M, Batten MP, Polyzos A, et al. Versatile, high quality and scalable continuous flow production of metal-organic frameworks. Sci Rep. 2014;4:5443. doi: 10.1038/srep05443
  • Rubio-Martinez M, Avci-Camur C, Thornton AW, et al. New synthetic routes towards MOF production at scale. Chem Soc Rev. 2017;46(11):3453–3480. doi: 10.1039/C7CS00109F
  • Min Wang Q, Shen D, Bülow M, et al. Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 2002;55(2):217–230. doi: 10.1016/S1387-1811(02)00405-5
  • Czaja A, Leung E, Trukhan N, et al. Industrial MOF synthesis. In: Farrusseng D, editor. Metal-organic frameworks: applications from catalysis to gas storage. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. p. 339–352.
  • Ren J, Dyosiba X, Musyoka NM, et al. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord Chem Rev. 2017;352:187–219. doi: 10.1016/j.ccr.2017.09.005
  • Ragon F, Horcajada P, Chevreau H, et al. In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66. Inorg Chem. 2014;53(5):2491–2500. doi: 10.1021/ic402514n
  • Mueller U, Richter I, Schubert M. Porous metal organic framework based on pyrroles and pyridinones. Ludwigshafen: BASF Aktiengesellschaft; 2007.
  • Crawford D, Casaban J, Haydon R, et al. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci. 2015;6(3):1645–1649. doi: 10.1039/C4SC03217A
  • Crawford DE. Extrusion – back to the future: using an established technique to reform automated chemical synthesis. Beilstein J Org Chem. 2017;13:65–75. doi: 10.3762/bjoc.13.9
  • Carné-Sánchez A, Imaz I, Cano-Sarabia M, et al. A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nat Chem. 2013;5:203. doi: 10.1038/nchem.1569
  • Garzon-Tovar L, Cano-Sarabia M, Carne-Sanchez A, et al. A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. React Chem Eng. 2016;1(5):533–539. doi: 10.1039/C6RE00065G
  • Zhang J, Gong C, Zeng X, et al. Continuous flow chemistry: new strategies for preparative inorganic chemistry. Coord Chem Rev. 2016;324:39–53. doi: 10.1016/j.ccr.2016.06.011
  • Munn AS, Dunne PW, Tang SVY, et al. Large-scale continuous hydrothermal production and activation of ZIF-8. Chem Commun. 2015;51(64):12811–12814. doi: 10.1039/C5CC04636J
  • McKinstry C, Cathcart RJ, Cussen EJ, et al. Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem Eng J. 2016;285:718–725. doi: 10.1016/j.cej.2015.10.023
  • Bayliss PA, Ibarra IA, Perez E, et al. Synthesis of metal-organic frameworks by continuous flow. Green Chem. 2014;16(8):3796–3802. doi: 10.1039/C4GC00313F
  • Albuquerque GH, Fitzmorris RC, Ahmadi M, et al. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. Cryst Eng Comm. 2015;17(29):5502–5510. doi: 10.1039/C5CE00848D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.